APPENDIX A #### Method of Calculation for Rate of Weather Involvement in GA Fatalities In the Introduction of this report, we stated "Data derived by us from National Transportation Safety Board statistics (1995-1997) support this assertion, showing IMC implicated in approximately 32% of GA fatalities." Here is how we calculated that figure: | Year | % GA acci- | % in | % of IMC acci | % of VMC | |------|--------------|---------------|---------------|-----------------| | | dents in VMC | IMC | dents fatal | accidents fatal | | 1995 | 90 | 10 | 68 | 16 | | 1996 | 90 | 10 | 63 | 15 | | 1997 | 90 | 10 | 69 | 16 | | | | average | 66.7 | 15.7 | | | | | | | | | | 10%*66.7= | 6.7 | 6.7 / 20.8 = | | | | 90%*15.7= | 14.1 | 0.32 | | | | total % fatal | 20.8 | | We started with data from the National Transportation Safety Board (NTSB) Annual review of aircraft accident data, U.S. general aviation, calendar years 1995-97 (the latest available year was, indeed, 1997). The figure of 90% GA accidents occurring in VMC was taken from the text, which claimed "More than 90 percent of accidents occur in visual meteorological conditions" (emphasis ours, NTSB, 1997, p. 2 used to illustrate). So we assumed that 90% was an estimate, but a conservative one. We then followed these steps: - The reports state that 90% of GA accidents occur in VMC (visual meteorological conditions). - Therefore, by deduction, (100-90) = 10% must occur in IMC (instrument meteorological conditions). - The reports state that 68, 63, and 69% of IMC accidents during their respective years involved fatalities (average = 66.7%), as opposed to 16, 15, and 16% of VMC accidents, respectively (average = 15.7%). - If 10% of accidents involve IMC, and 66.7% of these are fatal, then (10% * 66.7%) = 6.7% of overall accidents therefore involve IMC PLUS fatalities - If 90% of accidents involve VMC, and 15.7% of these are fatal, then (90% * 15.7%) = 14.1% of overall accidents therefore involve VMC PLUS fatalities. - Therefore, ((6.7 / (6.7+14.1)) = 32%) is the ratio of (fatal accidents involving IMC / total fatal accidents), meaning that IMC is implicated in approximately 32% of GA fatalities. ## APPENDIX B # Participant Debrief Form | S # | | |-----|---| | | What is your own normal personal minimum for VFR visibility? | | | Your normal personal minimum for VFR cloud ceiling | | | Are these minimums rock-solid, or do you adjust them a little, depending on the circumstances? | | | Have you ever flown this particular route before (or a similar situation)? | | | Did the distance you had to fly through bad weather affect your willingness to take off? (for example, | | | if the distance had been greater, would you have been even less inclined to take off than you were?) | | | If you were in the "high-incentive" condition, did this affect your willingness to take off? | | | Do you think having passengers would affect your willingness to take off? (increase it, no change, | | | decrease it) | | | If you had a lot more flight hours, would that have change your willingness to take off? (increase it, no | | | change, decrease it) | | | If your flight mission had been critical (for example, delivering a human heart for surgery), would that change | | | your willingness to take off? (increase it, no change, decrease it) | | | Have you ever flown a Piper Malibu before? Did this affect your willingness to take off? | | | It made me more willing because I was anxious to try it out, | | | It didn't matter one way or the other, | | | It made me less willing because I was afraid I'd make more mistakes | | | Did the fact that this was a simulation (and not reality) affect your willingness to take off? | | | It increased willingness because | | | ☐ (a) I wanted to fly the sim and/or | | | □ (b) I knew I couldn't really get injured in it, | | | No, it had no effect because | | | ☐ (a) it didn't matter to me one way or the other | | | □ (b) there were positives and negatives but they cancelled each other out | | | It decreased willingness because | | | ☐ (a) I was unfamiliar with this particular simulator | | | □ (b) I didn't want to make any mistakes in front of the experimenter | | | How economically significant was the money to you? | | | 1_not at all 2_a little 3_fairly significant 4_significant 5_very significant | | | If you were to crash in the simulator, how embarrassed would you be? | | | 1_not at all 2_a little 3_fairly 4_significantly 5_extremely | | | Have you ever had a bad flight experience related to weather?If so, please describe briefly below. | ## APPENDIX C | | | | | | | | | | | ~ | | | | | | | | |--------------------|--------|---------|--------|----------|------------------------|---------|----------|----------|----------|-----------|-----------|---------|-----------|----------|----------|-----------|---------------| | | YrsFlg | g | gender | Type Lic | ^{Inst} rating | fhtot | th 12mtm | th90atm | HP Tot | HP 12m Tm | HP 900 Tm | S/ time | SI 12m Im | S1900 Tm | 41 Time | 41 12m Tm | 41 909 tm | | N | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | | # Missing | | | | | | | | | | | | | | | | | | | Median | 1.8 | 23.5 | male | priv. | 50/50 | 183.5 | 80.0 | 35.0 | 5.0 | 3.0 | 0.0 | 25.0 | 10.0 | 5.0 | 2.0 | 1.0 | 0.0 | | Average | 4.3 | 26.1 | | | | 753.0 | 159.9 | 49.1 | 37.9 | 16.9 | 6.9 | 69.3 | 20.7 | 14.4 | 52.7 | 4.7 | 2.2 | | S.D. | 7.6 | 8.5 | | | | 2605 | 239.6 | 54.1 | 88.5 | 40.8 | 18.8 | 256.8 | 30.1 | 26.5 | 322.3 | 11.0 | 5.2 | | Max | 48.25 | 69 | | | | 20000 | 1200 | 250 | 560 | 200 | 125 | 2000 | 175 | 160 | 2500 | 75 | 25 | | Min | 0.25 | 18 | | | | 35 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Skew | 4.2 | 2.8 | | | | 7.1 | 2.9 | 1.9 | 4.2 | 3.6 | 4.9 | 7.4 | 3.4 | 3.8 | 7.7 | 4.9 | 3.1 | | SE Skew | 0.31 | 0.31 | | | | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | 0.31 | | Z skew | 13.67 | 9.07 | | | | 22.95 | 9.47 | 6.05 | 13.51 | 11.57 | 15.84 | 24.13 | 11.15 | 12.29 | 24.86 | 15.90 | 10.09 | | p _{zskew} | 0.000 | 0.000 | | | | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | Kurtosis | 21.1 | 10.6 | | | | 52.8 | 9.0 | 3.5 | 21.0 | 12.4 | 27.4 | 56.8 | 14.5 | 17.3 | 59.2 | 29.1 | 9.5 | | SE Kurt | 0.61 | 0.61 | | | | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | 0.61 | | Z kurt | 34.8 | 17.5 | | | | 86.8 | 14.8 | 5.7 | 34.5 | 20.4 | 45.1 | 93.3 | 23.9 | 28.4 | 97.4 | 47.8 | 15.5 | | p _{zkurt} | 0.000 | 0.000 | | | | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | Outlier(s)? | yes | yes | | | | yes | | Vismin | ceilmin | minadj | flort | $dthruw_{\chi}$ | buckmot | passmot | fithrmot | missnmot | malibu | malibsub | simmott | simmosub | bucksig | crashsig | trafsig | $badw_{\chi}$ | | N | 59 | 59 | 57 | 57 | 57 | 28 | 56 | 55 | 47 | 53 | 50 | 51 | 46 | 51 | 40 | 11 | 55 | | # Missing | 1 | 1 | 3 | 3 | 3 | 32 | 4 | 5 | 13 | 7 | 10 | 9 | 14 | 9 | 20 | 49 | 5 | | Median | 4.0 | 2000 | 1 | 0 | 1 | 1 | -1 | 0 | 1 | 0 | 0 | 0 | 3 | 3 | 3 | 2 | 0 | | Average | 4.1 | 2186 | 0.8 | 0.4 | 0.6 | 0.6 | -0.5 | 0.3 | 0.7 | | -0.2 | 0.2 | | 2.7 | 3.2 | 2.3 | | | S.D. | 1.6 | 1213 | | | | | 0.7 | 0.6 | 0.5 | | 0.6 | 0.5 | | 1.3 | 1.2 | 1.3 | | | Max | 10 | 8000 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 6 | 5 | 5 | 5 | 1 | | Min | 1 | 1000 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 0 | -1 | -1 | 1 | 1 | 1 | 1 | 0 | | Skew | 1.2 | 2.4 | | | | | 1.0 | 0.0 | -1.3 | | 0.0 | 0.4 | | 0.2 | 0.2 | 0.8 | | | SE Skew | 0.31 | 0.31 | | | | | 0.32 | 0.32 | 0.35 | | 0.34 | 0.33 | | 0.33 | 0.37 | 0.66 | | | Z skew | 3.75 | 7.77 | | | | | 3.08 | 0.02 | -3.73 | | 0.00 | 1.34 | | 0.53 | 0.43 | 1.22 | | | p _{zskew} | 0.000 | 0.000 | | | | | 0.004 | 0.399 | 0.000 | | 0.399 | 0.163 | | 0.347 | 0.363 | 0.190 | | | Kurtosis | 2.5 | 8.8 | | | | | -0.1 | -0.4 | 0.7 | | -0.1 | 0.4 | | -1.1 | -1.2 | 0.5 | | | SE Kurt | 0.61 | 0.61 | | | | | 0.63 | 0.63 | 0.68 | | 0.66 | 0.66 | | 0.66 | 0.73 | 1.28 | | | Z kurt | 4.0 | 14.4 | | | | | -0.2 | -0.6 | 1.0 | | -0.2 | 0.6 | | -1.7 | -1.6 | 0.4 | | | p _{zkurt} | 0.000 | 0.000 | | | | | 0.390 | 0.324 | 0.235 | | 0.389 | 0.339 | | 0.092 | 0.108 | 0.367 | | | Outlier(s)? | yes | yes | | | | | | | yes | | | | | | | | | Standard z-tests (e.g. skew/[standard error of skew]) showed that the demographic data were greatly skewed by the presence of a small number of older pilots with, for instance, a great deal of flight experience. Winsorizing corrected virtually all this non-normality. Appendix D explains the factors examined. ### APPENDIX D ## Complete list of factors examined | Name | Description | Name | Description | |----------|--|----------|--| | subjnum | Order in w hich S w as run | asi | AIS Anxiety Sensitivity Index | | idnum | S. ID number | bis | BIS-10 Barratt Impusiveness Scale total | | takeoff | Takeoff (yes/no) | imp_plan | BIS Impulsive Planning | | latcy | Latency (time elapsed before takeoff) | imp_motr | BIS Motor Impulsivity | | vis | Ground Visibility (statute miles) | imp cog | BIS Cognitive Impulsivity | | ceil k | Ceiling (in thousands of ft) | impuls | EIS Eysenck Impulsivity Scale Impulsivity | | incent | Financial Incentive (bonus / no bonus) | ventur | EIS Venturesomeness | | wxsevrty | Weather severity (1 / (Vis x Ceil)) | empath | EIS Empathy | | exptr | Experimenter (WK or HH) | hei | HEI Hazardous Events Index (Hunter) | | yr_flg | Year started flying | | Multidimensional Personality Questionnaire | | yrs flg | Years flying | wellbe | MPQ Wellbeing | | age | Age | socpot | MPQ Social Potency | | gender | Gender | achieve | MPQ Achievement | | type_lic | License type | socclose | MPQ Social Closeness | | inst_rtg
| Instrument rating (yes/no) | stress | MPQ Stress Reaction | | fh_tot | Flight hours total | alienate | MPQ Alienation | | fh_12m | FH past 12 months | aggress | MPQ Aggression | | fh_90d | FH past 90 days | control | MPQ Control | | hp_tot | High-performance aircraft hours total | harmav | MPQ Harm Avoidance | | hp_12m | HP past 12 mo | tradit | MPQ Traditionalism | | hp_90d | HP past 90 days | absorpt | MPQ Absorption | | si_tot | Simulated instrument hours total | roq_c | ROQ Risk Orientation Q'naire Cautiousness | | si_12m | SI past 12 mo | roq_p | ROQ Risk Propensity | | si_90d | SI past 90 d | SSS | SSS Sensation Seeking Scale | | ai_tot | Actual instrument hours total | anx_st | STAS State-Trait Anxiety Scale State | | ai_12m | Al past 12 mo | anx_tr | STAS Trait | | ai_90d | Al past 90 d | | Balloon Analog Risk Task (Lejuez) | | vis_min | Personal visibility minimum | durn_sec | BART Task Duration (seconds) | | ceil_min | Personal ceiling minimum | pumpsavg | BART Average # of pumps | | min_adj | Adjust mins. to match the situation? | pmpavglo | BART Average # of pumps (low incentive) | | fln_rt | Flow n this route before? | pmpavgme | BART Average # of pumps (med incentive) | | dthruwx | Did distance through the w eather matter? | pmpavghi | BART Average # of pumps (hi incentive) | | buck_mot | Was the \$ bonus a motivation? (yes/no) | pmpadjav | BART Adjusted Ave. # of pumps | | pass_mot | Would passengers have been a motivation? | padjavlo | BART Adj. Ave (low incentive) | | fhincmot | Would more flt hrs increase motivation? | padjavme | BART Adj. Ave (med incentive) | | missnmot | Was the type of mission a motivation? | padjavhi | BART Adj. Ave (high incentive) | | mal_sub | Was the type of flight simulator a motivation? | pay_tot | BART Total Payoff (cents) | | sim_mot | Was fact of being a sim (vs. reality) a motvn? | pay_low | BART Total Payoff (low incentive) | | simmotsb | Sub-categories of sim_mot | pay_med | BART Total Payoff (med incentive) | | buck_sig | How significant was the \$\$ to you? | pay_hi | BART Total Payoff (high incentive) | | crashsig | Was worrying abt crash a motivation? | bang_tot | BART Total Balloon Explosions | | tx_mot | Was traffic a motivation? | bang_low | BART Balloon Explosions (low incent) | | badwx | Ever had a bad wx experience? (y/n) | bang_med | BART Balloon Explosions (med incent) | | asa | Aviation Safety Attitude Scale (Hunter) | bang_hi | BART Balloon Explosions (high incent) | Three of these factors were not predictors, namely *idnum*, *takeoff*, and *latcy*. *IDnum* was merely the numerical proxy for subject name. *Takeoff* was the dependent variable. *Latency* was a descriptor, and could not be used as a discriminative predictor because maximum latency (120 minutes) was always associated with takeoff, anything less, with non-takeoff. Therefore, there were 83 usable predictors. #### APPENDIX E #### Statistical Issues in Logistic Regression **Outliers.** Outliers are defined for our purposes here as any score greater than 3 standard deviations above or below the mean. Outliers can sometimes exert an almost unbelievable effect on the statistical outcome of an analysis. Take, for example, a distribution of ones and zeros representing Financial Incentive, one of our predictors of Takeoff. For the full data set, N=60, our actual raw distribution yields the following result during SPSS logistic regression: #### Variables in the Equation | | | В | S.E. | Wald | df | Sig. | Exp(B) | |------|----------|------|------|-------|----|------|--------| | Step | INCENT | .981 | .541 | 3.287 | 1 | .070 | 2.667 | | 1 | Constant | 847 | .398 | 4.523 | 1 | .033 | .429 | a. Variable(s) entered on step 1: INCENT. This result says that the probability of Incentive being a significant predictor of Takeoff is .070. Now let us change *one single value* in the data distribution from a "0" to a "10" to represent, say, a typographical error during data coding. Changing just this *one value in 60* results in the following: #### Variables in the Equation | | | В | S.E. | Wald | df | Sig. | Exp(B) | |------|----------|-----|------|-------|----|------|--------| | Step | INCENT | 027 | .204 | .018 | 1 | .894 | .973 | | 1 | Constant | 319 | .294 | 1.171 | 1 | .279 | .727 | a. Variable(s) entered on step 1: INCENT. Suddenly we have gone from p = .070 to p = .894 in one step—by turning a single data point into a gross outlier. Obviously, this says a lot about the need for accurate data coding. It also says quite a bit about how outliers can affect an otherwise normal data distribution. Now logistic regression does not have an underlying logical assumption of normality (Tabachnick & Fidell, 2000). You could, for instance, use data with any relatively symmetrical distribution. But it does have problems with outliers, as this clearly demonstrates. The data in this study showed outliers in the demographics, where a small number of older pilots significantly skewed the distributions for predictors such as age, flight hours, and years flying. Without some kind of correction, therefore, the effect of outliers would have led us to seriously misinterpret the statistical analysis. Applying a data transformation (such as a square root or logarithmic function) is a common way to deal with outliers. A somewhat less well-known, but equally respected treatment is *winsorization* (Winer, 1971, pp 51-54). 1971). In winsorization, the two most-extreme values in the distribution (the one highest and the one lowest) are replaced by a copy of the next most-extreme values. For example, in the distribution we would replace the "0" with a "1" and the "99" with a "5." Now this new distribution is still not normal because it is too flat. But it no longer has the gross outlier it once had. That extreme value of "99" is still represented by a relatively high value, which preserves the ordinality (rank order) of the scores. But notice that there was no actual change to most of the numbers. Only two values were changed, and one of those was a very modest change from a "0" to a "1." Whereas, if we had applied a mathematical function such as a square root to shrink the "99" closer to the mean, almost all of the values would have been affected. Here winsorization exerts its biggest effect on the greatest offender, which is exactly how data conditioning should work. This illustrates how this technique can sometimes preserve the spirit and actuality of a distribution much better than can some of the more routinely used methods. For this reason, it was the method of choice for our data. If a distribution has more than one outlier, say ``` 0 0 1 1 2 2 2 2 3 3 3 3 3 3 4 4 4 4 5 5 47 99 (mean 9.09, SD 22.23) ``` we simply apply the winsorization procedure twice, to yield ``` 1 1 1 1 2 2 2 2 3 3 3 3 3 3 4 4 4 4 5 5 47 47 (mean 6.82, SD 13.06) ``` at stage one and ``` 2 2 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 5 5 5 5 (mean 3.18, SD 1.14) ``` at stage two. In this example, the two-stage winsorization affects 6 values, rather than just 2. For this reason we have to be careful in repeating this process too often, since it can lead to the antithetical problem of range restriction. In this, study winsorization was limited to no more than 2 stages. For example, in the full data set (N=60) 16 demographic variables were seen to have outliers > 3 SD, and therefore received either a 1- or 2-stage winsorization, depending on what was needed to eliminate these outliers. After treatment, all 16 variables emerged corrected to tolerance. A final point worth mentioning is that winsorization has a net result of making our statistical analysis more conservative. This happens precisely because the distributions' ranges and variances contract during conditioning, and any time variance contracts, *p*-values generally contract as well. This is not true with purely ordinal statistics, because these calculate their value based on nothing more than rank order. But both chi-square and logistic regression do not fall into that category. While logistic regression is often touted as being distribution-free, in fact, we have graphically illustrated that things are a bit more complex. Outliers skew its innermost calculation of likelihood ratios (SPSS, 2004). However, the data conditioning process employed here allowed us to successfully treat data and to present *p*-values representing useful-yet-conservative estimates of statistical reliability. **Correction for Familywise Error.** Another important issue is the one of correcting *p*-values to account for the number of predictors examined. Most statisticians recommend some sort of correction for experimentwise Type I error (unwarranted rejection of the null hypothesis). Otherwise, if we do many tests, odds are that some will be "significant" simply by chance. However, we consciously chose to deviate from that standard procedure because, in an exploratory study such as this, such rigor, while admirable in one sense, would most certainly have the net result of too much Type II error, that is, failure to detect a true effect where there was one. And, while the danger of inflated experimentwise Type I error was fully appreciated, we also felt it made more sense to report low *p*-values where found, because these really do represent the best guess we have regarding effect. The ideal way to resolve the problem, of course, is to run Monte Carlo simulations to get estimates for mean predictivities and R^2 s, given specific parameters of specific models. This was done in Part II of this report. Another accepted approach is to replicate studies or parts of studies, using different participants. That will be done in follow-up studies, whenever possible. #### **APPENDIX F** ### **Brief Description of Logistic Regression** Logistic regression is a statistical technique specially constructed for use with discrete dependent variables, for example, Takeoff versus No Takeoff. It is a very useful technique, but it is also
extremely easy to miscode, misunderstand, and misinterpret. The best way to understand it is through a combination of mathematics and example. Regression is the search for factors that predict other factors. In this experiment, we wanted to predict the likelihood that an average pilot would take off into known marginal weather, given the added influence of financial incentive. Three of our predictive factors (*Visibility, Cloud Ceiling,* and *Financial Incentive*) were under experimental control; the rest reflected either demographic or personality characteristics of each individual pilot. Logistic regression uses an equation to predict the outcome of an *event*, in this case Takeoff versus No Takeoff (Dreyszig, 1972; Norušis, 1999; SPSS, 2004). This equation is $$p_{event} = \frac{1}{1 + e^{-(\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_w X_s)}}$$ (1) where e is the natural log (approximately 2.718), B_o (beta-sub-zero) represents a constant, and B_i is the corresponding beta weight for the ith predictor, X_i score. Varying the values of the exponent of e produces a distinctive sigmoid (S-shaped) curve capable of representing probability of takeoff **Figure F1.** Sample plot of the sigmoid function $y=1/(1+e^{-(.5+x)})$, showing how the overall value of the prediction equation lies between zero and one. In our case, this represents the probability of a pilot taking off, 0-1 (0-100% chance), given some particular combination of predictor scores X_1 through X_n . When a given pilot's calculated probability exceeds an predetermined cutoff level (for example, 0.5), we will predict "Takeoff," otherwise we will predict "No Takeoff." Logistic regression has two very attractive advantages over competing statistics. First, as we mentioned, it allows us to make predictions. Second, it allows us to test statistical interactions between predictors. Equation 2 shows how this is typically implemented, showing the prediction equation with its constant B_o , one main variable X_1 , plus one interaction term involving three factors B_2 , X_2 , and X_3 . Notice that the interaction term literally involves multiplying together the separate predictors. This is an important point to which we will presently return. $$p_{ewm} = \frac{1}{1 + e^{-(\beta_0 + \beta_2 X_1 + \beta_2 X_2 X_3)}}$$ (2) To illustrate this numerically, suppose we tested a model where X_1 represented a pilot's score of 34 on the Rohrmann Risk Orientation Questionnaire (subscale P), and where X_2 and X_3 represented the interaction of Visibility x Ceiling, 3 (miles) and 1 (feet, in thousands), respectively. In that case, the prediction equation for that individual would be $$p_{Takeoff} = \frac{1}{1 + 2.718^{-(-3.396 + (0.74(34) + 1.97(3)(1)))}} = .428$$ Since .428 is less than the default cutoff value of .500, we would predict that this particular pilot would not take off. When we run the SPSS analysis on the full data set, the program basically goes through a similar process for each individual, computing a set of guesses regarding each pilot's takeoff. Some guesses will be right, others wrong. Then the beta weights are shifted slightly, the analysis is repeated, and the results compared to the priors. If shifting the betas in that direction produces improvement, the direction of shift is repeated, otherwise it is reversed. After a certain number of iterations, the process halts and summary tables are produced. Here is one of the summary tables for an actual model: The most important numbers in this table, as far as we are concerned, are the β weights, and the significance of the Wald statistic (Sig). What the β s here tell us is primarily the direction of the association between a predictor and the outcome. Take ROQ_P, whose β is positive. That tells us that an *increase* in the ROQ_P score predicts an *increase* in takeoff probability. If β had been negative, an increase in the ROQ_P score would have predicted a *decrease* in #### Variables in the Equation | | | В | S.E. | Wald | df | Sig. | Exp(B) | |------|---------------|--------|-------|-------|----|------|--------| | Step | ROQ_P | .074 | .061 | 1.465 | 1 | .226 | 1.077 | | 1 | CEIL_K by VIS | .197 | .095 | 4.325 | 1 | .038 | 1.217 | | | Constant | -3.396 | 1.902 | 3.186 | 1 | .074 | .034 | a. Variable(s) entered on step 1: ROQ P, CEIL K * VIS . takeoff probability. The magnitude of β is also important, though its interpretation is more complicated. We have to take into account how the predictor was scored. Since β is multiplied by the predictor score, if the predictor scores are large (e.g. 1000 feet altitude) then even a small β can be very influential. The Wald significance (Wald *p* value) works very much like a normal statistical *p* value. Wald *p* tells us the reliability of the measurement, estimating the proportion of times we would expect to find a different result, if we repeated the analysis a large number of times. In this particular instance, ROQ_P's Wald *p* is .226—too large to be considered reliable. The Constant (β_0) in this analysis behaves somewhat like other predictors. However, the Constant is sometimes the most difficult term to interpret in a regression model. It can reflect the sample's base rate for the dependent variable. However, this depends on what other predictors happen to be in the model. If all the other predictors are "Go" predictors (ones with $\beta > 0$, where an increase in predictor score reflects an increase in the DV), then the Constant may take on a contrarian role and assume $\beta < 0$). Whereas, had all the predictors been "No-go," with $\beta < 0$, then the Constant may have a $\beta > 0$. In mixed models, with both Go and No-go predictors, things could go either way. Therefore, interpretation of the Constant has to be approached with skill and caution. ### Categorical Variables and the Use of Contrasts The analytic usefulness of logistic regression is a big plus. What is not a plus is the meticulous care that has to go into coding the data, setting up the analysis, and interpreting the results. For one thing, the technique is susceptible to outliers, as we mentioned. Misentry of even a single data point can wreck an analysis. Another serious difficulty lies in the use of categorical predictors. Although logistic regression is technically capable of handling both categorical and continuous variables, special care needs to be taken when using categoricals. As long as all variables are continuous, either ordinal or ratio-scale, no special care needs to be taken. But categoricals are different. This is because the program takes categoricals coded as letters and converts them internally into zeros and ones. For example, we had two experimenters involved in running the participants. Call them "H" and "B." During the SPSS analysis, experimenter "H" is internally converted by the program into either a zero or a one, in order to be plugged into equation 2. This conversion introduces the opportunity for serious conceptual errors to be made if we are not scrupulous in coding in the data, thinking out our analysis, and interpreting the results. To drive this idea home, let us take this example further. If, during the analysis, we fail to specify the variable EXPTR as categorical (which requires bringing up a dialog box and making some adjustments), then we could be making a large mistake. That is because SPSS has automatic defaults and will change *any* letter into a number, whether or not we understand what it is doing. So look at the equation—trying to treat "H" as "nothing" and "B" as "one unit of something" makes sense only in a very limited context. And, say we run a model containing an in- teraction. What the mathematics actually does is eliminate the effect of ALL the predictor scores in that interaction term whenever it calculates a data point involving "H," because it multiplies the other variables in that interaction term by zero for that data point. And this is something we might not have intended to do exactly that way. This is the way we do contrasts, but the point is that the program can be doing a contrast we do not know it is doing if we do not understand exactly what is happening mathematically. Looking at some actual SPSS output will make this a little clearer. Below is some output for the simple model EXPTR + Constant. In the first case, "H" was set to internally code as "1" and "B" as "0." In the second case, those codes were reversed. You can see that the statistical significance (Sig.) of EXPTR does not change, and that this particular variable did not produce a reliable effect (.593). The betas for EXPTR are the same, just with opposite sign. This is simply because we are logically testing one thing "A" against another thing "not A" and, because there are only two things, so "not A" has no degrees of freedom. But, as we would expect from the math and the iterative computational algorithm we talked about, the constants turn out to be different. This is because, in the first instance, "H" was exerting the #### Variables in the Equation | | | В | S.E. | Wald | df | Sig. | Exp(B) | |------|----------|-----|------|------|----|------|--------| | Step | EXPTR(1) | 288 | .539 | .285 | 1 | .593 | .750 | | 1 | Constant | 223 | .335 | .443 | 1 | .506 | .800 | a. Variable(s) entered on step 1: EXPTR. #### Variables in the Equation | | | В | S.E. | Wald | df | Sig. | Exp(B) | |------|----------|------|------|-------|----|------|--------| | Step | EXPTR(1) | .288 | .539 | .285 | 1 | .593 | 1.333 | | 1 | Constant | 511 | .422 | 1.468 | 1 | .226 | .600 | a. Variable(s) entered on step 1: EXPTR. primary mathematical effect, since B = 0, whereas B = 1 in the second. But the constant is being updated always. Consequently, the two models are related, and similar, but the first one is really measuring "the effect on takeoffs of a pilot's being run by 'H'," as opposed to being run by
'not H' (i.e. 'B')." The negative beta in the first case means "pilots were less likely, on the whole, to take off if they were run by 'H' than by 'not H'" (although recall that p is not reliable, so we would not ultimately assert any difference) In this case, it so happens that 'not H' has to mean "B," but that was only because there were only two experimenters. Had there been three, we would have had to test a third contrast, and each would have tested primarily the effect of that one experimenter, set up consciously by us to code as "1." Things get even more interesting when it comes to interactions involving more than one categorical variable. The essential logic remains the same, however: a) contrasts focus on whatever happens to be coded "1," and b) interactions go to zero whenever any single term in them becomes zero. The bottom line is that we cannot simply mindlessly run SPSS and hope to understand the data. #### **Problems Associated With Logistic Regression** Like all statistics, logistic regression is not a perfect technique (Tabachnick & Fidell, 2000). Some of its weaknesses include 1. Correlation does not imply causation. All regression techniques do is to establish a mathematical relation between the presence/absence of one thing and the presence/absence of another. But such correlation does not necessarily mean, for instance, that Factor A causes Factor B. The classic counterexample is the case where Factor A and Factor B are both caused by Factor C. In that case, A and B still show correlation, but there is no causation whatsoever between A and B. - 2. Outliers can greatly skew models and parameter estimates. We demonstrated this clearly in Appendix E. Fortunately, this problem was easily overcome by winsorizing the data. - 3. *Independence of samples is assumed.* Logistic regression is basically a between-subjects technique, not for repeated measures gathered over time. That was not a factor in this study, however. - 4. Absence of multicollinearity is assumed. If predictors are highly correlated, they are probably measuring the same factor, and will not contribute much, if anything additional to a model, other than wrongly inflated significance. Fortunately, the models we present did not pose this problem (see Appendix G for the intercorrelation matrices). - 5. The ratio of cases to model predictors is important. A common rule of thumb, seen in many textbooks, is that a model should contain no more than one predictor per 10 cases (e.g., per 10 pilots). If a constant is used, this should be counted as one predictor However, we noticed an ancillary problem during this analysis, namely - 6. The case-to-predictor ratio issue extends to the number of predictors measured <u>before</u> analysis is commenced. This is discussed in greater depth below, and in the Part II report. #### Problems Associated With Too Many Predictors in Forward Stepwise Logistic Regression At some point, we had the intuition that simply trying to examine too many predictors in our primary technique of forward stepwise regression could introduce a combinatorial problem. That theoretical problem is easiest illustrated using our actual situation. We started with 83 candidate predictors, some of which were eventually eliminated due to reasons such as having missing values or being discrete (which often led to unwieldy combinations of contrasts). So, in the end, we looked at roughly 60 predictors. Now, consider the following deductive logic: Suppose you were trying to model some data taken from 30 pilots, upon whom you had 60 measurements (predictors) each. This would correspond to, say, our Low Financial Incentive group. Then the rule of thumb we mentioned above in Point 5 suggests that all such models should have no more than 30/10 = 3 predictors. So far, so good. The problem comes when we consider random numbers. Suppose every one of our predictors was simply "noise," taken randomly from a Gaussian (normal, bell-shaped) distribution of numbers. Given that the logistic regression prediction equation is basically $$p_{evou} = \frac{1}{1 + e^{-((\beta_3 +)\beta_1 X_1 + \beta_2 X_2 (+\beta_2 X_2))}}$$ (1) notice how the exponent term $-((\beta_0 +) \beta_I X_I ...)$ is really a sum. It will be the sum of our predictors (each weighted). That means that, whatever the actual numbers are for each pilot's predictor scores, we are going to weight them, then add them up to form a total, which will then be plugged into Eq. 1. So what are the chances that, given nothing but random numbers, SPSS will ultimately end up finding the precise set of β weights such that the Equation 1 turns out greater than 0.5 for pilots who subsequently took off, versus a predicted score of less than 0.5 for those who did not? Shockingly, the answer is that it is highly likely. We verified this by running Monte Carlo simulations, a standard technique in statistics. Using normal random number generation with μ (mu, mean) of 5 and σ (sigma, standard deviation) of 1, we were easily able to duplicate results such as the following: This illustrates that SPSS essentially "made sense out of nonsense." It summed the three random pseudo-predictor scores for each pilot, shown by the three jagged curves, multiplying each score by the β weights it derived, inserted them into Equation 1 and came up with the much-more regular solid "Prediction Equation" line. Notice how closely that matched the thick, dashed "Takeoff" line representing a dependent variable score of 1 for a takeoff and 0 for a non-takeoff. The three points where those two curves did not closely correspond are labeled as "error." Since 27 of the 30 cases were "predicted" correctly, this model's predictivity was .90. Why is this? Well, look at it from the model's point of view. In forward stepwise regression, the software first chooses one predictor to enter into the model, then a second, a third, and so forth. With 60 predictors, it has 60 candidates for the first choice, 59 for the second, 58 for the third, and so on. Thus, in a three-single predictor model, there are 60*59*58/(3*2*1) = 34,220 possible combinations, not even counting interactions. What is happening is that, given such a huge number of combinations, at least one is highly likely to form a highly "predictive" sum, even though, purely taken individually, none of the individual scores has any meaning whatsoever. We did 100 Monte Carlo simulations for each of our low- and high-incentive groups, with and without a constant in the model. While this was well under the usual standard of 1000-10000 or so simulations per condition, doing each simulation was quite tedious, and these 400 runs did have sufficient reliability to illustrate our basic points. Here we see that the proportion of takeoffs matters. Noise models with a proportion of takeoffs close to .5 show lower predictivity and Nagelkerke R^2 than ones with a proportion of takeoff equal to .3. But, overall, predictivities were still in the 70-90% range, and R^2 s in the 40-70% range for these random-number models. #### Evaluation of the Meaningfulness of Our Data So how reliable were the conclusions for this Part I report? | | Low Fin. Incen | tive group | High Fin. Incer | tive group | |-------------------------|----------------|----------------------|-----------------|----------------------| | | models with | constant | models with | constant | | | Predictivity | Nagel R ² | Predictivity | Nagel R ² | | μ _{MonteCarlo} | 80.4 | 0.36 | 76.3 | 0.48 | | CI 95 | ≅.89 | ≅.59 | ≅.85 | ≅.64 | | μ _{ActualData} | 85.7 | 0.52 | 75 | 0.28 | | lpha estimated | 0.16 | 0.08 | NS | NS | The method used to derive these estimates is detailed in the companion report *Pilot willingness to take off into marginal weather, Part II: Antecedent overfitting with forward stepwise logistic regression.* "BAC," "BCA," "CAB," and "CBA"—three degrees of freedom for the first choice, two for the second, and one for the last. ¹ The reason for the denominator is that the order of terms in the model makes no difference. SPSS logistic treats "ABC" the same as "ACB," To summarize, the .95 confidence intervals around the predicted means (CI .95) imply that any model exceeding these estimates for predictivity and R^2 is highly likely to be a better-than-chance model. Confidence intervals are a standard approach used in many statistics. The full data set and high incentive models derived from real pilots' data in the current study did not differ significantly from what could be expected from random number simulations. That is why we limited our primary observations to high-level conclusions and the Low Incentive data. The real-pilots' low-incentive 85.7% predictivity did exceed the random-generated Monte Carlo mean of 80.4%, although it did not top the estimate of 89% for the .95 CI. Their Nagelkerke R^2 of .52 considerably bested the Monte Carlo mean of .36 and came close to meeting the .95 CI of .59. So, judging from the Monte Carlo scatterplots (shown in Part II), reliability for the low incentive n=28 experimental data was roughly $\alpha=.16$ for predictivity and $\alpha=.08$ for R^2 . As said previously, for the purposes of a preliminary report such as this, it is often wiser to be somewhat relaxed in reporting results than we would be later on in the research process. This is because of the Type I-Type II error tradeoff, that is, where excessive stringency in setting significance levels results in a lower number of false positive results but strictly at the cost of a higher number of missed results. In other words, at first the strategy involves going for breadth of findings. The small number of results that fail to be reliable will be discovered and eliminated as other studies cross check results presented here. # APPENDIX G | | _ | _ | | | _ | _ | - | _ | N | _ | _ | _ | _ | • | _ | | _ | ` | _ | | | | _ | | _ | _ | | | | | | | _ | _ | _ | _ | _ | _ |
--|----------|--------------|-------------|-----------------|-------------------|------------------|-------------------|---------------|--------------|-----------------|---------------|--------------|---------------------------|-----------|-----------------|------------------------|-------------|--------------------|-----------------------|--------------------------|-------------------------|--------------------|--------------------|-------------------------|--------------------------|-------------------------|--------------------|------------------------|--------------------------|-------------------------|----------------------|-------------------|--------------------|-------------------|-----------------------|----------------------|-----------------------|----------------------| | (o)) suoisous | M Japou) d pips | | _ | L | L | Ш | Ш | Ц | Ш | | | 4 | 4 | | | 4 | 4 | 4 | 4 | 4 | 4 | _ | 4 | | | | | | | L | | | 4 | - | | | | | | | | | ٠., | ۰. | | | | | | | - OISOICH | 1 | | | | | | | | | | | | | | 0.681 | | | (sines) (AAA | | | | | | | | Ī | 0.841 | 0.890 | 0.735 | | | + | + | - | \dashv | - | _ | + | $^{+}$ | + | + | 1 | - | | - | H | H | Н | | H | Н | \dashv | + | -4 | + | | | | | | | | 72 | 25 | 97 | H | 0 | 0 | 0 | | (b9m) eye (bb art 19A8
(id) eye (be aqmuq 19A8 | _ | _ | | | | | _ | 4 | 4 | _ | | | | | L | L | | | | Ц | | | 1 | Ц | | | | | | | | 0.672 | 0.805 | 0.697 | Ш | Ш | | Ш | | (ol) 946 (bB or) (b9fn) 946 (bB sqfnuq TAAB (b9fn) 946 (bB sqfnuq TAAB | 1 | | | | | | | | 0.538 | | | 0.512 | 0.655 | | | 0.780 | | (ol) SAT TANA | 1 | 7 | | | | | 1 | 7 | 1 | 7 | | | | | H | | П | | | H | | 7 | | 1 | | | | | | 0.726 | | | | Ĭ | | 0.568 | | 0.769 | | sq _{Und} | 4 | 4 | _ | | _ | | _ | 4 | 4 | _ | _ | | | | | | | | | Н | | _ | - | 4 | _ | | | | 3 | 0.7 | | 2 | | L | 7 0.8 | 5 0.5 | 3 0.7 | 0.7 | | eve los sun 1948 | ,] | | | | | | 0.673 | | | 0.712 | | | 0.777 | 0.775 | 0.693 | | | (Ved ham eye) sqmuq TshAB (Ved ham eye) sqmuq TshAB | | | | | | | | Ī | | | | | | | | | | | | | | $\overline{}$ | | | | | | 0.818 | 0.930 | 0.813 | 0.576 | 0.580 | | | 0.879 | 0.677 | | 0.759 | | (Ked no. | - | - | | | | | - | + | | - | | | | | H | | Н | | | \forall | 4 | | -3 | + | | | 31 | 0 | | 0 22 | | Ö | H | | | 0 | | 32 0. | J | Ļ | 4 | | | | | | | 0.831 | | 0.740 | 0.977 | 0.574 | | L | | 0.684 | | | 0.832 | | (eyb) sqnuq TAA8 | | | | | | | | | | | | | | | | | | 2 | Intra-BARI | | | | 1 | | | 0.732 | 0.924 | 0.707 | 0.964 | 0.701 | 0.523 | 0.496 | | | 0.858 | 0.623 | 0.789 | 0.705 | | 19AB | 1 | 1 | | | | | 1 | 7 | + | 7 | | | | | H | | Н | - 6 | ntra-bak | <u>u</u> | | 7 | 1 | 1 | | | 0.810 | | 0.679 | ס | 0 | | | | 0.837 | 0.878 | 0.729 | 0 | | saund . | 4 | 4 | _ | Ц | _ | 4 | _ | 4 | 4 | _ | _ | _ | | L | L | L | Ц | _[| = 8 | 3 | Ц | 4 | • | 10 | 7 0.725 | | | 2 0.967 | | 3 | ,÷ | 3 0.581 | | | | | | 2 | | | | | | | | | | | | | | | | | | ĺ | | | | | | | 1 | 0.845 | 0.937 | 0.829 | 0.982 | 0.822 | 0.908 | 0.793 | 0.554 | 0.528 | | | 0.913 | 0.749 | 0.761 | 0.753 | | Sone on Sone of the th | 7 | 1 | | | | 1 | 1 | 1 | 1 | 1 | 1 | | | | П | Γ | П | | П | П | | 1 | 0.669 | | 7 | - | • | •• | | • | • | • | f | f | Г | F | Ħ | f | | J ASIN UUPILI | \dashv | 4 | 4 | Н | 4 | \dashv | \dashv | \dashv | \dashv | 4 | 4 | 4 | - | L | H | \vdash | Н | - | H | Н | 3 | 4 | ő. | 4 | \dashv | 4 | 4 | - | H | H | ⊢ | H | ⊢ | \vdash | Н | Н | Н | Н | | SonebiovA mieH pam | | | | | | | ╛ | | ╛ | | | | | L | L | L | Ш | | L | Ц | 0.493 | | | | | | | | | L | L | L | L | L | L | Ц | ╚ | ∐ | | MieH OdM | Ī | 1 | 1 | | | Ī | Ī | Ī | T | 1 | Ī | 1 | | | | ٦ | | | | | -0.484 | 1 | Ī | 1 | 1 | 1 | | | | | Ī _ | Ĺ | ĺ | | | | | | | 1011110- | 4 | 4 | _ | Ц | _ | 4 | 4 | 4 | 4 | 4 | 4 | _ | | L | L | L | Ц | | Ц | Н | $\overline{}$ | 4 | 4 | 4 | 4 | 4 | _ | | Ц | Ц | L | L | L | L | \sqcup | Ц | Ц | Ц | | MpQ Control | | | | | | | | | | | | | | | | ĺ | | | 0.532 | | -0.520 | | | | | | | | | | Ì | 1 | l | | | | | | | Not Stess Reaction | + | + | - | \dashv | - | + | + | + | + | + | + | - | | - | H | H | Н | | | Н | 7 | + | ᅈ | \dashv | _ | \dashv | - | | _ | H | H | H | ┝ | ┝ | Н | Н | Н | Н | | EIS Venturesomenss | | | | | | | | ┙ | | | | | | | L | L | Ш | | | Ц | | | 0.648 | | | _ | | | | | L | L | L | L | Ц | Ц | Ц | Ц | | EIS Ventur | | | | | | | | | | | | | | | | | | -0.567 | | 0.562 | 0.647 | | | | | | | | | | | | | | | | | | | Amisindul SI3 | 4 | 4 | _ | _ | _ | 4 | 4 | 4 | 4 | 4 | _ | _ | | | L | _ | Ц | ٩ | | 0 | 0 | 4 | _ | 4 | _ | _ | | | _ | | L | L | Ļ | <u> </u> | Н | Н | Н | Н | | EIS ILLIE | | | | | | | | | 4 | | n | | | | | | -0.766 | VINISIDA
IEIOT SIB | + | + | - | - | - | + | + | + | <u>ام</u> | 2 5 | | - | | | 8 | _ | - | | _ | H | - | + | 1 | 1 | | - | | | _ | | _ | H | ┢ | ┢ | Н | Н | Н | H | | BIS Total | | | | | the | g | stc | | ntra-BIS | | correlations | | | | 0.488 | | -0.488 | BIS Cognitive | 1 | | | | ect | λ | e pii | Ħ | ţ | - 6 | 3] | | | 0.775 | F | | | | | | | | .578 | 1 | | | | | | | | Г | T | T | Ħ | П | П | П | | VIVISIUGITI TOJOM SIB | 4 | 4 | _ | _ | These reflect the | relatively young | of the | H | 4 | - | $\overline{}$ | - | | | | | 3 | | | Н | | 4 | 0.5 | 4 | | 4 | | | _ | | | L | - | - | Н | Н | Н | Н | | 6UIUIII | | | | | hes | elati | age o | | | | 1 | | 0.601 | | 0.578 | | -0.576 | | | | 0.532 | | | | | | | | | | | | | | | | | | | SIB SIB | + | 7 | | | f | ī | Ï | H | + | | 1 | - | | 2 | ω | | . 576 | | Н | | - | 1 | 1 | 1 | | + | | | Н | | - | H | H | H | H | Н | Н | Н | | Anxiety Sensitivity Index | | | | | | 1 | | | | | | | 0.560 | 0.815 | 0.558 | | -0.5 | | | | 0.487 | | | | | | | | | | | | | | | | | | | Anxiety Sena | | | | | | 1 | | Ī | | | | i | | | Г | | | | | | | 0.532 | 0.587 | | | | | | | | | | | | П | П | | | | omst isball | - | 4 | •• | | | } | • | - | • | 4 | | 5 | | | H | | | | | Н | - | o. | 0 | + | | + | | | | | | H | ┢ | ┢ | H | Н | Н | Н | | 101 111 | | | | | | | | | | | | 0.915 | | | | | | | | Ш | | | | | | | | | | | | | L | L | Ц | Ш | Ш | Ш | | tol inst hr tor | | | | | | | I | | Ī | ĺ | 0.500 | 1 | Ī | | 1 | 765.0 | | Ī | | | | Ţ | Ī | Ī | Ī | Ī | | Ī | | | ĺ | 1 | | | $ \ $ | | | μŢ | | om St 12 mo | 1 | + | | | | + | 1 | + | 0.828 | | 0 | | | H | H | J | H | | H | H | + | + | 7 | ┪ | 7 | \dashv | ٦ | | H | H | H | H | H | H | H | H | П | П | | joj juj justi r | | | | | | 4 | | | | 2 | 0 | | | L | L | L | Ц | | L | Щ | Ц | 4 | _ | 4 | 4 | 4 | | | Ц | L | L | L | Ļ | Ļ | \vdash | Н | Н | Ц | | om str holis | | | | | | | | 0.567 | | 0.642 | 0.559 | | | | | | | | | | | | ļ | | | | | | | | | | | | | | H | | | or Ised dh | П | | | | | 0.767 | | Ī | Ī | | | | | | | | | | | | | 1 | | 1 | | | | | | | | Γ | | | Г | П | П | П | | tol suh health | | | | | 4 | 11 0. | - | + | + | 31 | - | | _ | - | - | 80 | H | _ | H | Н | H | \dashv | + | \dashv | + | + | - | _ | H | - | - | ┝ | \vdash | \vdash | H | Н | Н | H | | p ₀₆ 10 | | | | | 0.744 | 0.541 | | | | 0.581 | | 1 | | | L | 0.508 | Ш | | | Ш | | | | | | | | | | | L | L | L | L | Ц | Ш | Ш | Ш | | p 06 Ised H3 | | | | | | | 0.686 0.612 | 0.520 | 0.517 | | 0.693 0.656 | 0.605 | | | | | | | | | | | ļ | | | | | | | | | | | | | | H | | | om St Isba HA | | | 137 | 182 | 331 | | 989 | ٦ | | 181 | 393 (| 0.623 0.605 | | | H | | H | | H | H | | 1 | | 1 | 1 | + | | | | | - | H | H | H | H | H | П | П | | 101 8/1/ 1/2 | | | 0.737 | | 0.631 | 4 | 3 0.6 | 4 | 4 | | 9.0 | 0.6 | | L | L | <u>+</u> | Ц | | Ц | Ц | | 4 | | 4 | _ | _ | | | Ц | L | _
| L | L | L | \sqcup | Ц | Н | Ц | | 101 814 1461Jd | | 0.619 | | 0.591 | | | 0.673 | | | 0.904 | | | | | l | 0.604 | | | | | | | | | | | | | | | Ì | 1 | | | | | | | | gniyli zrea ^y | 989 | | | | | | | | | | | | | | | | | | | П | | 1 | T | 1 | T | | | | | | | | | | П | П | П | П | | | o | _ | | | | _ | _ | | | | | | | | | | | | | | | 1 | | _ | | | | | | | | | H | | H | H | H | H | | | | | | | | | | | | | | i | Ę. | | | ex | | | SS | nsity | ale | | | ay) | BART pumps (ave med pay) | ay) | | <u>0</u> | BART pumps adj ave (med) | (hi) | | | | | | | Fi Fi | | | | | | | | | | | | | | | ı | Julsiv | | | s Ind | | ance | usne | nope | g Sc | ≥ | _ | 9 | e me | e hi | ave | ave(| ave | ave | ents) | ÷ | (pai | | (tot | (9) | (me | j. | | | | ور | | Ļ | 9 | | ţ | 0 | | | 0 | i | m e | | 4 | vent | | woid. | autio | isk P | ekin | nxiet | xiet) | ave, | ; (ave | ; (ave | adj | adj | adj | adj | y (ce | ol) Yr | y (m | y (hi | ions | ions | ions | ions | | <u> </u> | | 12 n | 90 d | rs to | 12 n | 90 d | str hr | Z m | p 06 | nr to | 2 m | p 06 | nitive | | ulsivi | ns E | ntro | rn A | Ü | nn Ri | n Se | ate A | ait Ar | sdur | sdur | sdur | sdwr | sdur | sdur | sdur | /e ba | /e ba | /e ba | /e ba | plos. | sold | sold | sold | | | 4 | H past 12 mo | H past 90 d | Hi perf hrs tot | IP past 12 mo | IP past 90 d | Simd instr hr tot | SI past 12 mo | SI past 90 d | Act inst hr tot | Al past 12 mo | Al past 90 d | BIS Cognitive Impulsivity | BIS (tot) | EIS Impulsivity | Hazardous Events Index | MPQ Control | MPQ Harm Avoidance | Rohrmann Cautiousness | Rohrmann Risk Propensity | Sensation Seeking Scale | STAI State Anxiety | STAI Trait Anxiety | BART pumps (ave lo pay) | ZT pt | BART pumps (ave hi pay) | BART pumps adj ave | BART pumps adj ave(lo) | ₹T pu | BART pumps adj ave (hi) | BART ave pay (cents) | BART ave pay (lo) | BART ave pay (med) | BART ave pay (hi) | BART explosions (tot) | BART explosions (lo) | BART explosions (med) | BART explosions (hi) | | | Age | I. | I. | Ï | 무 | 를 ; | S | <u></u> | <u>.</u> | Act | Ā | Ā | BIS | BIS | EIS | Haz | MP | Ā | & | Rot | Ser | ST, | ST, | ΒĄ | BĄ | ₽¥ | BA ΒĄ | BA | Intercorrelation matrix, Pearson R, all Ss (N=60), all variables with significance p < .0001 (R² >.23). | | | ing | s tot | 12 mo | p 06 | rs tot | 90 d | Simd instr hr tot | 2 mo | n tot | 2 mo | p.04 | ASA Aviation Safety Attitude Scale | ety Sensitivity Index, | BIS Impulsive Planning | nitive Impulsivity | npulsiveness Scale total | ysenck Impulsivity Scale Impulsivity | EIS Venture someness | EIS Empathy | ardous Events Index | cial Potency | hievement | MPQ Social Closeness | enation | MPQ Aggression | ntrol | MPQ Harm Avoidance | IPQ Iraditionalism | nn Cautiousness | Rohmann Risk Propensity | Isation Seeking Scale | if Anxiety | BART duration (seconds) | ımps (average) | Imps (ave. row paysched) | imps (ave. high payoff) | imps adjusted ave. | BART pumps adjusted ave.(low) | Imps adjusted ave.(med) | Imps adjusted ave.(ngn) | ave. payoff (low schedule) | BART ave. payoff (med) | re. payoff (high) | alloon explosions (total) | phosions (new screed) | (high) | |---|------------------------|--------------|------------------|---------------|---------|-----------|-----------|-------------------|---------|-----------|-----------|-----------|------------------------------------|------------------------|------------------------|--------------------|--------------------------|--------------------------------------|----------------------|-------------|---------------------|--------------|-----------|----------------------|---------|----------------|---------|--------------------|--------------------|-----------------|-------------------------|-----------------------|------------|-------------------------|----------------|--------------------------|-------------------------|--------------------|-------------------------------|-------------------------|-------------------------|----------------------------|------------------------|-------------------|---------------------------|-----------------------|--------| | | (hau) | Years flying | Age
Flight hr | FH past 12 mo | FH past | HI PELL L | HP past | Simd ins | SI past | Act inst | Al past | Al past 9 | ASA Avi | ASI Anxiety | dul SIB | BIS Coo | Barratt | Eysench | EIS Ven | EIS Em | MEI Haz | MPQ Sc | MPQ Ac | MPQ Sc | MPOAI | MPQ Aç | MPQ Cc | MPQ Ha | MPQAE | Rohma | Rohma | STALS | STAI Tra | BART d | BART p | BARI P | BART | BART p | BART p | BARI p | BARTa | BART a | BART a | BART a | RAPT | BART | BART e | | | (barn) snoisolaxa TAA8 | | Ì | П | | Ī | Ī | Ĭ | | Ť | Ì | Ì | | Ì | Ī | T | | Г | | Ī | Ī | Ī | Ī | Ī | Ī | Ī | Ī | Ī | T | П | Ī | Ī | | Ī | Ī | Ī | Ī | П | Ī | Ī | Ī | Ī | | Ī | Ī | Ī | 0.585 | Ī | | | Ī | Г | | | | Ī | | | | | | | | | | | | П | | | | Ī | | | | 0.630 | П | | | TOXA UOOUR | ll | | | | | Ì | П | | | | | | | | Ī | | | | | Ī | Г | | | | Г | | | Ī | | | | | П | | | | П | T | ı | Ī | Ī | | | 0000 | 0.000 | 0.786 | | | HOVEY | | | | | | Ì | П | | | | | | | | Ī | | | | | Ī | Г | | | | Г | | | Ī | | | | | П | | | | П | T | ı | Ī | 0.743 | 0.800 | 0.750 | | Ī | П | | | ipe cui | | | Ħ | | T | Ì | Ħ | | Ī | | | | | Ī | Ť | | T | | Ī | T | Г | | Ī | | Ī | | | Ī | | Ī | Ī | | П | Ī | | Ī | П | Ħ | Ì | | Ī | | 200 | 0.72 | 0 585 | 0.839 | | | !pe sdu | | | | | | T | | | | Ì | | | | | | Ī | T | | | Ī | Ī | | | İ | Ī | | | | | | | Ī | | | | Ī | Ħ | | ,000 | 0.831 | t | | 0.40 | 0.843 | 0.803 | _ | | | ipe sdu. | | Ī | | | T | T | П | Ī | T | T | | | | T | T | Ī | Г | | Ī | T | Г | | T | Ī | Г | | Ī | T | П | Ī | T | Ī | П | Ī | T | Ť | П | П | 0.582 | Ť | 0.672 | П | 202 | 0.737 | 0.700 | П | | | | | | | | Ť | | П | | Ì | | | | | ı | Ť | | T | | Ī | T | Г | | | | Ī | | | Ī | | | Ì | | | Ī | | Ī | П | 0.786 | 0.924 | 0.875 | 0.544 | | 9 | 0.890 | - | - | | | | | T | П | | T | Ī | П | | Ť | Ī | П | | 1 | T | t | ĺ | Ī | | 1 | Ť | Г | П | T | | Γ | П | T | Ī | П | T | Ť | | П | 1 | Ī | Ī | 0.880 | 0.476 | 0.825 | 996.0 | Ĺ | 0.469 | 777 | 0.741 | 0 564 | 0.883 | | | | | t | Ħ | | T | T | П | | Ť | Ī | П | | İ | Ť | Ť | ĺ | T | | 1 | Ť | r | П | T | | T | П | T | T | П | T | Ť | | П | 1 | 1 | 9.829 | 0.930 | 0.643 | 0.956 | 608.0 | 0.471 | П | 030 | 0.859 | 0.300 | _ | | F | sdund IN | | t | | | Ť | İ | Ħ | | t | İ | | | | Ť | Ì | ĺ | T | | | Ť | T | | İ | Ī | ı | | Ì | f | | | t | Ī | | | 0.648 | 3.494 | 9.778 | 0.959 | 0.579 | Ť | 0.502 | | 046 | 618.0 | _ | _ | | | sdund () | | Т | П | Ī | T | Ť | П | Ī | T | T | П | | T | T | T | t | Г | П | T | Ť | Г | П | T | Ť | r | П | T | T | П | T | T | Ť | П | 200 | 0.825 | 3875 | 0.981 | 008.0 | 988 | 7.842 | 0.498 | П | 9 | 91919 | 203.0 | 0.797 | | | noitenub TAAo | | T | Ħ | | Ť | İ | Ħ | | Ť | l | | | | Ť | Ť | | T | | Ī | Ť | r | | T | İ | t | | Ī | Ť | П | ı | Ť | | П | 0.463 | 794. | Ī | 3.487 | 3.515 (| Ť | | 0.489 | | Ť | | Ī | Ť | | | Maix Anxieh IA10 | | T | Ħ | | Ť | İ | Ħ | | Ť | l | | | | Ť | Ť | | T | | Ī | Ť | r | | T | İ | t | | Ī | Ť | П | ı | Ť | | П | Ĭ | Ť | Ť | Ť | Ť | ı | Ť | Ť | | ı | t | t | Ħ | | | viaixnA alaic " | | | Ħ | Ī | T | T | Ħ | | Ť | İ | | | | Ť | Ť | | T | | Ť | Ť | Г | | T | İ | t | | Ī | Ť | П | T | Ť | 0.740 | П | Ť | Ī | Ť | П | Ħ | Ť | T | T | Ħ | Ī | Ť | T | П | | | 90/NEDIOVA MIEH DAM | | | | Ī | | t | Ħ | 1 | | ı | | | | | ı | t | ı | | | t | t | | T | t | t | | | t | | 101 | 7.565 | Ť | | | | ĺ | Ħ | Ħ | ı | Ť | t | | | t | ı | Ħ | | | MPQ Control | П | T | П | T | Ť | Ť | П | Ť | Ť | T | П | Ħ | 7 | Ť | T | t | T | П | 7 | Ť | r | П | T | t | T | П | T | T | .676 | 907 | 7.490 | t | Ħ | 7 | Ť | t | П | П | Ť | Ť | t | Ħ | Ť | t | t | П | | | noitenation | | | Ħ | | t | t | Ħ | T | t | T | Ħ | | | 1 | t | t | r | Н | 1 | Ť | t | П | T | t | r | H | T | t | ٥ | Ì | 7 | 0.531 | H | 1 | t | t | H | H | 1 | t | t | H | t | t | t | Ħ | | | MPQ Shess Reaction | H | | Ħ | | t | t | H | | t | t | Ħ | | | Ť | t | | t | | Ť | t | r | | t | t | 472 | H | Ħ | t | .473 | Ħ | 406 | _ | | Ť | t | t | H | H | t | t | t | H | t | t | t | Ħ | | | Augedina | | | H | T | t | t | Ħ | Ť | t | t | H | | 1 | † | ł | t | H | Н | † | t | H | П | T | t | 476 0 | | Ħ | t | 0 | t | - | 0 | H | † | t | t | Н | H | † | t | t | H | t | t | t | H | | | EIS Venturesomeness | | | | Ħ | ı | t | Н | 1 | ı | t | | | | ı | t | t | t | | | t | t | | | t | ľ | | 0.621 | t | Н | 0.530 | 789. | t | | | t | t | H | H | t | t | t | H | t | t | t | H | | | Vivising | | Ť | H | Ť | Ť | t | Н | Ť | t | t | Ħ | H | 1 | Ť | ۲ | t | t | П | 1 | t | r | П | Ť | t | t | .782 | O- | t | H | 0 | 0 | t | H | .466 | t | t | .510 | Н | 107 | 497 | t | Ħ | t | t | t | П | | | Cognitive Impuleina | П | | H | | t | t | H | | t | t | H | | 1 | t | t | 7697 | H | Н | Ť | t | ۲ | Н | Ħ | t | t | 0- | Ħ | t | H | Ħ | 470 | 0.485 | H | o
o | t | t | Ŷ | H | Ť | o
P | t | H | ł | t | t | Ħ | | - | AivisIndml 1010 | | | H | | t | t | H | | t | t | H | | 1 | t | 676 | Ü | 515 | Н | t | t | ۲ | Н | Ħ | t | t | .470 | Ħ | t | H | 002 | 275 | 0 | H | t | t | t | Н | H | t | t | t | H | ł | t | t | Ħ | | | eninnely əviziuqmi 218 | H | | H | H | t | t | H | t | t | t | H | | 1 | † | 488 0 | 753 | 0 099 | Н | 1 | t | ۲ | П | t | t | t | .648 -0 | Ħ | t | Н | Ť | 0 | | H | 1 | t | t | H | H | 1 | t | t | H | t | t | t | Ħ | | - | | | | | 1 | t | t | Н | Ť | | t | | H | | | c | 0 | 0 | | | t | t | | | 400 | 485 | o- | | t | | ı | 484 | 561 | | | t | t | Н | Н | ł | t | t | Н | t | t | t | Н | | H | NSA NSA | H | Ŧ | Ħ | H | t | t | Н | ł | t | t | Ħ | | | + | f | l | f | H | 1 | 1 | 0.537 | H | • | 0 | 0 | Н | -0.464 | t | Ħ | 1 | c | Ö | Ħ | 1 | t | t | H | H | 1 | Ŧ | t | H | + | 1 | f | Ħ | | H | om St IzBQ IA | H | t | H | | \dagger | t | H | + | \dagger | t | 0.873 | | 1 | \dagger | t | l | H | H | + | t | 0 | H | \dagger | | H | H | 0- | t
 H | \dagger | \dagger | - | H | + | \dagger | t | Н | H | † | t | t | H | † | f | f | H | | H | Act inst hr tot | H | t | H | | \dagger | t | H | + | \dagger | 0.668 | - | | 1 | \dagger | t | l | H | H | + | t | ۲ | 0.483 | \dagger | | H | H | Ħ | t | H | \dagger | \dagger | - | H | + | \dagger | t | Н | H | † | t | t | H | † | f | f | H | | F | b 06 IsBq IS | H | ł | H | | \dagger | \dagger | H | + | \dagger | 625 0.6 | 0.539 0.0 | H | \dagger | \dagger | t | | H | Н | + | \dagger | H | .0 | \dagger | 1 | ۲ | H | \forall | t | H | \dagger | \dagger | | H | + | t | \dagger | Н | H | \dagger | t | t | H | + | + | ł | H | | \vdash | SI past 12 mo | H | t | H | | t | t | H | 3 | 0.841 | 0.561 0.6 | _ | H | | ł | l | l | t | H | ł | t | | | + | ł | ŀ | H | H | t | H | H | t | - | H | ł | t | t | H | H | ł | t | t | H | ł | ł | ł | H | | \vdash | tot 'n' tisni briil's | H | Ŧ | Ħ | H | t | t | H | _ | 0.481 0.8 | _ | | H | 1 | 7 | f | - | f | H | 7 | + | H | H | + | | f | H | 7 | Ŧ | Ħ | 7 | Ŧ | + | H | 7 | + | t | H | H | ł | Ŧ | t | H | + | ł | f | H | | tailed | b 06 IsBA 9H | H | ł | H | | \dagger | \dagger | 791 | 0 | 727 0 | 0 | 0 | H | \dagger | \dagger | t | | H | Н | + | \dagger | ۲ | H | \dagger | 1 | ۲ | H | \forall | t | H | \dagger | \dagger | | H | + | t | \dagger | Н | H | \dagger | t | t | H | + | + | ł | Н | | p<0) 2- | HP past 12 mo | H | ╁ | H | H | \dagger | 902 | 682 0. | + | 616 0 | 0.487 | H | | 1 | + | ł | l | 1478 | H | + | + | H | 0.504 | \dagger | | H | H | \forall | t | H | \forall | + | | H | + | \dagger | t | Н | H | † | t | 0.483 | H | + | ł | ł | H | | ance (| Hi pertitins top | H | + | H | H | 0.850 | 0.587 0.6 | 532 0.1 | + | Ĉ | ò | _ | 0.511 | + | + | ł | l | ò | Н | + | + | H | 0.3 | + | + | H | Н | \dashv | + | H | \dashv | + | + | H | + | ╁ | + | Н | H | \dagger | ł | Ŷ | H | + | + | ł | H | | Threshold significance (p<θ) 2-tailed | syeb 90 days | Н | ł | H | | 0 400 0 | | 0.575 0.5 | 2 | 0.516 | 0.808 | _ | 0. | | ł | l | l | H | Н | ł | ł | ŀ | | + | ł | ŀ | Н | H | t | H | H | ł | H | H | ł | + | ł | Н | Н | ł | ł | ŀ | H | + | ł | ł | H | | reshold | FH past 12 months | H | Ŧ | H | 0.753 | 0.616 | | .613 0.5 | | 0 714 0 6 | | | H | 1 | 1 | f | 1 | f | 0.469 | 7 | + | f | H | + | 1 | f | 576 | + | + | H | + | Ŧ | + | H | 7 | Ŧ | + | H | H | 1 | + | f | H | + | 1 | ł | H | | T | Flight hrs total | H | + | 702 | | 0.524 0.6 | | 768 0.6 | + | 914 0 7 | _ | .499 0.6 | H | \dagger | + | ł | | H | ۰.0 | - 3 | 494 | H | 508 | + | 1 | H | -0 | \forall | + | H | \dashv | + | + | H | + | + | + | Н | H | + | + | H | H | + | + | ł | H | | 0.01 | | H | + | 0.7 | H | 0.0 | 0.6 | 0.7 | + | 50 | 5 | 0.4 | 0.535 | 1 | + | ł | | H | 533 | Ŧ | ő | 0.464 | 0.6 | + | | H | H | \forall | + | H | \dashv | + | | Н | + | + | + | Н | H | + | + | H | H | + | 1 | ł | H | | | Pairs fiving 96A | H | 718 | Н | H | + | ł | Н | + | + | ł | H | -0. | + | + | ł | - | H | -0. | 5 | 990 | Ÿ | Н | + | - | H | H | \dashv | + | H | \dashv | + | + | H | + | + | + | Н | H | + | + | H | H | ╂ | + | ł | H | | L | Years fi. | Ц | 0.7 | Ц | | 1 | | Ц | | 1 | 1 | Ш | | | | L | | L | Ц | Ġ | ő | | Ц | | | L | L | | | L | | 1 | | Ц | | | | | | 1 | | L | Ц | 1 | | | Ш | Intercorrelation matrix, Pearson R, all variables with significance p < .01, Low Financial Incentive group (N=30). | BART belloon explosions (bilal) Correlations (N=30 in all | Age | FH past 12 mo | FH past 90 d | HP past 12 mo | HP past 90 d | Simd instr hr tot | SI past 90 d | Act inst hr tot | Al past 12 mo | Al past 90 d | BIS Cognitive Impulsivity | Barratt Impulsiveness Scale total | Eysenck Impulsivity Scale Impulsivity | MPQ Control | Rohrmann Cautiousness | SSS Sensation Seeking Scale | STAI Trait Anxiety | BART pumps (ave. low payoff sched) | BART pumps (ave. med. payoff) | BART pumps (ave. high payoff) | BART pumps adjusted ave. | BART pumps adjusted ave.(low) | BART pumps adjusted ave.(med) | BART pumps adjusted ave.(high) | BART ave. payoff (low schedule) | BART ave. payoff (med) | BART ave. payoff (high) | BART balloon explosions (total) | BART balloon explosions (low sched) | BART balloon explosions (med) | BART balloon explosions (high) | | |--|---------|---------------|--------------|---------------|--------------|-------------------|--------------|-----------------|---------------|--------------|---|-----------------------------------|--|---------------------------------|--------------------------------|-----------------------------|--------------------|------------------------------------|-------------------------------|-------------------------------|--------------------------|-------------------------------|-------------------------------|--------------------------------|---------------------------------|------------------------|-------------------------|---------------------------------|-------------------------------------|-------------------------------|--------------------------------|---------| | (sines) hore 19A8 | | | | | | | | | | | | | | | | | I | | | | | | | | | | | | 0.808 | 0.899 | 0.786 | I | | BARYT ^{ave} . Payoff (Cents) | | | | | | | | | | | | | | | | | ī | | | | | | | | 0.743 | 0.800 | 0.750 | | | | | ī | | (hem). 9VB . (hem) AAA (high). 9VB . (hgh). 9VB . (hgh). 9VB . (hgh) AAA | | | | | | | | | | | | | | | | | 1 | | | | | | | | | | | 0.721 | | | 0.839 | ı | | ipe sdu | ┖ | | | | | | | | | | | | | | | | 4 | | | | | | | 0.831 | | | | 0.843 0 | | 0.803 | 0.851 0. | II. | | ipe sdu | ┺ | | | _ | - | | | | - | | | | - | | | - | H | | | | | | | 3.0 | 72 | - | L | _ | 88 | | 9.0 | Î. | | , ollipp | | | | | | | | | | | | | | | | | -+ | | | | | 9 | 4 | 2 | 0.672 | | | 0.737 | 0.788 | 1 0.653 | _ | ļ. | | | | L | | | | | Ц | | | | | | | | | | I | | | | | 0.786 | 0.924 | 0.875 | | | | 0.890 | | 0.791 | 0.801 | ļ | | - (AVB) 011 | | | | | | | | | | | | | | | | | I | | | | 0.880 | | 0.825 | 0.968 | | | | 0.741 | | | 0.883 | I | | TAAB (ave. low payoff) | | | | | | | | | | | | | | | | | I | | | 0.829 | 0.930 | | 0.956 | 0.809 | | | | 0.859 | | 0.835 | 0.793 | I | | (.s. TAA8 | | | | | | | | | | | | | | | | | ī | | | | 0.778 | 0.959 | | | | | | 0.815 | 0.900 | 0.692 | | ī | | (.9VB) sqmuq TAA8 | | | | | | | | | | | | | | | | | + | 0.825 | 0.934 | 0.875 | 0.981 | 0.800 | 0.889 | 0.842 | | | | 0.919 | 0.705 | 0.793 | 0.797 | -
 - | | ViaixnA alale IATS | | | | | | | | | | | | | | | | | 0.740 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | F | - | | 0 | 0 | 0 | 0 | + | | 10 Control | H | | | | | | | | | | | | | | 9, | | 0.7 | | Н | Н | | _ | 7 | | | | | | | | | | | A STress Reaction | ┢ | | | | | | | | | | | | | | 0.676 | | 1 | | | | | | | . 1 | | | | | | | | | | EIS Venturesomeness | L | | | | | | | | | | | | | | | | 0.661 | | | | | | | Intra-BART | Suoi | | | | | | | L | | | | | | | | | | | | | | | | | | 0.682 | | | | | | | ľ | ira-B/ | correlations | | | | | | | | | Barratt Impulsiveness Scale total | | | | | | | | | | | | | | -0.782 | | | | | | | | | L | Ē | ٥ | | | | | | | | | Vilvisina The Table | | | | | | | | | | Ī | 0.697 | • | | Ė | Barratt In White | H | | | | | | | | | 1 | 0 | 269.0 | Ŀ | | | | | | | | | | | | | | F | F | | | F | | | winishudral 1010th | ┢ | | | | | | | | | Ц | 92 | 0. | Ľ | _ | | | | | H | H | - | _ | | | | | | | | | | | | eninnela əvisinami 218 | L | | | | - | | | | | - | 0.676 | 3 | 0: | Ľ | | H | H | | | | | | | | - | - | | | | | | | | om St 12 mo | <u></u> | ١ | | <u></u> | ••• | | | | | - 3 E | :: | 0.753 | 0.990 | | Old Other | 500 | Oleiations | | | | | | | | | | | | | | | | | 101 II. | L | | | | | | | | L | 0.873 | ••••• | | | | Life Carrier | E L | | | Ш | Ш | | | | | | | | | | | | L | | or inst hr tot | | | | L | | | | | 0.668 |
969.0 | ••••• | | | | | | | | | | | | | | L | L | L | L | L | | L | Ĺ | | om S1 12 mo | | | | | | | 0.841 | | | | ••••• | joj 1/1 visni brni s | Ī | Ī | | | | | | 0.873 | | | • | p 06 ised di | T | f | f | H | ۱ | 0.791 | H | 0.727 0 | | | | | Ľ, | S C | 200 | | H | H | H | H | | | H | H | - | - | l | l | H | | l | F | | om St ised all | H | H | H | _ | | 0.682 0. | H | 0. | H | | | | ٠ | tho pil | ב
ב | H | H | H | H | H | | | H | H | - | - | | | _ | | | | | In pert hrs tot | L | F | | 20 | | 9.0 | | | | | ••••• | | The second secon | These As reflect the relatively | young median age of the priots | H | | | Н | Н | H | | | | L | L | L | L | L | - | L | H | | p 06 ISBd H | L | L | | 0.850 | | | | | 3 | 2 | • • • • • • • | | ٠ | S lelle | calal | L | | | Ц | Ц | Ц | | | | | | | | | | | L | | om Si si | L | L | | L | | | | | 0.808 | 0.727 | • | | ٥ | בא בא | li film | | | | Ш | Ш | | | | | | | | | L | | | L | | om St Ised H | L | | 0.753 | 0.685 | | | | 0.714 | 0.730 | 0.662 | | L | Í. | | yo | | | | | | | | | | | | L | L | L | | L | | | Pears flying | | 0.702 | | | 969.0 | 0.768 | | 0.914 | | | ••••• | **** | ĺ | 1_ | _ | | Ĺ | Н | Ĺ | Н | ш | • • • • • • • | ÷ | Н | Н | Н | Н | Н | Н | ш | Н | Н | Н | Н | Н | - | _ | - | - | - | H | H | Н | Intercorrelation matrix, Pearson R, all variables with significance p < .0001 (equivalent to $R^2 > .44$), Low Financial Incentive group (N=30). Note that most of the highly significant correlations have very simple explanations | BIS Impulsion | ElS Impulsion | EIS Ventyres | MPQ Stress 7 | MPQ Control | STAI State A | Non-Evident Correlations where R ² >.44 (N=30 in all cases) | |---------------|---------------|--------------|--------------|-------------|--------------|--| | 0.660 | | | | | , | Eysenck Impulsivity Scale Impulsivity | | · | -0.782 | | | | | MPQ Control | | · | | | | 0.676 | | Rohrmann Cautiousness | | · | | 0.682 | | | | Sensation Seeking Scale | | | | | 0.661 | | 0.740 | STAI Trait Anxiety | Pearson Rs, variables with significance p < .0001 (equivalent to $.44 \le R^2 \le .61$) whose explanation is not obvious simply because they are correlated by their very nature (e.g. the various measures calculated from BART). The upshot here is that a) Each of these correlations is perfectly logical, and; b) Even this small number of correlations involves less than half the variance. That means that each instrument presumably measured different factors for the most fact, which was as it should be. #### **APPENDIX H** | Description | Name | Sig. | g | MVs | Description | Name | Sig. | |--------------------------------------|----------|-------|----------|-----|---|----------|-------| | Order in which S. was run | runorder | 0.982 | | | Aviation Safety Attitude scale | asa | 0.651 | | Subject ID# | idnum | | | | Anxiety Sensitivity Index, total score | asi | 0.143 | | Takeoff (Y/N) | takeoff | | | | Barratt Impulsiveness Scale (BIS-10)Impulsive Planning scale | imp_plan | 0.902 | | Latency (minutes) | latcy | | | | BISMotor Impulsivity scale | imp_motr | 0.960 | | Visibility | vis | 0.113 | | | BIS-Cognitive Impulsivity scale | imp_cog | 0.886 | | Ceiling | ceil | 0.433 | | | BIStotal score | bis | 0.896 | | Incentive | incent | 0.070 | | | Eysenck Impulsivity Scale (EIS)Impulsiveness scale | impuls | 0.705 | | Experimenter | exptr | 0.593 | | | EISVenturesomeness scale | ventur | 0.088 | | Yr started flying | yr_flg | 0.785 | | | EISEmpathy scale | empath | 0.277 | | Years flying, total | yrs_flg | 0.966 | 2 | | Hazardous Events Index | hei | 0.560 | | | age | 0.653 | 1 | | Multidimensional Personality Questionnaire, Brief Form (MPQ-BF) | | | | | gender | 0.461 | | | MPQWellbeing scale | w ellbe | 0.870 | | Type of License | type_lic | 0.612 | | | MPQSocial Potency scale | socpot | 0.468 | | Instrument Rating | inst_rtg | 0.193 | | | MPQAchievement scale | achieve | 0.492 | | Total flight hours | fh_tot | 0.410 | 2 | | MPQSocial Closeness scale | socclose | 0.290 | | Flthrs past year | fh_12m | 0.536 | 2 | | MPQStress Reaction scale | stress | 0.528 | | Flthrs past 90 days | fh_90d | 0.444 | 1 | | MPQAlienation scale | alienate | 0.677 | | High-performance A/C, tot hrs | hp_tot | 0.476 | 2 | | MPQAggression scale | aggress | 0.248 | | HP last 12 mo | hp_12m | 0.287 | 2 | | MPQControl scale | control | 0.540 | | HP last 90 days | hp_90d | 0.151 | 2 | | MPQHarm Avoidance scale | harmav | 0.614 | | Simulated instrument hrs total | si_tot | 0.440 | 2 | | MPQTraditionalism scale | tradit | 0.657 | | Sim hr last 12 mo | si_12m | 0.239 | 2 | | MPQAbsorption scale | absorpt | 0.879 | | Sim hr last 90 d | si 90d | 0.235 | 2 | | Rohrmann Risk Orientation QuestionnaireCautiousness scale | roq c | 0.868 | | Actual instrument hrs, total | ai_tot | 0.467 | 2 | | Rohrmann Risk Orientation QuestionnaireRisk Propensity scale | roq_p | 0.225 | | Al last 12 mo | ai 12m | 0.776 | 2 | | Sensation-Seeking Scale | sss | 0.886 | | Al last 90 d | ai_90d | 0.868 | 2 | | State-Trait Anxiety InventoryState | anx_st | 0.853 | | Personal visibility minimum | vis_min | 0.386 | 2 | 1 | State-Trait Anxiety InventoryTrait | anx_tr | 0.736 | | Personal ceiling minimum | ceil min | 0.955 | 2 | 1 | Balloon Analogue Risk Task (BART)test duration | durn sec | 0.565 | | Do you adjust minima? | min adj | 0.398 | | 3 | BARTaverage pumps | pumpsav | 0.335 | | Flow n this route before? | fln rt | 0.427 | | 3 | BARTaverage pumps, low-payoff condition | pmpavglo | 0.465 | | Distance through w x imp? | dthruw x | 0.813 | | 3 | BARTaverage pumps, medium-payoff condition | pmpavgm | 0.630 | | \$ bonus motivating? (Hi Incent only | buck mot | 0.071 | | | BARTaverage pumps, high-payoff condition | pmpavghi | 0.198 | | Passengers change TO willingness | | 0.837 | | | BARTadjusted average | pmpadjav | 0.373 | | More flt hrs change TO willingness | | 0.893 | | | BARTadjusted average, low-pay condn | padjavlo | 0.782 | | Mission-critical chg. w-ness? | missnmot | 0.020 | | | BARTadjusted average, med-pay condn | padjavme | 0.868 | | Flow n Malibu chg w -ness? | mal sub | 0.840 | | | BARTadjusted average, high-pay condn | padjavhi | 0.207 | | Being a simulator chg w-ness? | sim mot | 0.127 | | | BARTtotal payoff (cents) | pay tot | 0.790 | | more specifically (re prev Q) | simmotsb | 0.138 | | | BARTtotal payoff, low-pay cond'n | pay low | 0.979 | | How significant was the \$ to you? | | 0.164 | \vdash | | BARTtotal payoff, med-pay cond'n | pay_med | 0.630 | | Would crash embarrass you? | crashsig | 0.048 | | | BARTtotal payoff, high-pay cond'n | pay_nou | 0.304 | | How much did you consider traffic | _ | 0.919 | | | BARTtotal balloon explosions | bang tot | 0.259 | | Ever had a bad wx experience? | badw x | 0.318 | \vdash | | BARTexplosions, low-pay cond'n | bang low | 0.422 | | | | | - | _ | BARTexplosions, med-pay cond'n | bang med | 0.325 | | | | | \vdash | | BARTexplosions, high-pay cond'n | bang hi | 0.305 | Predictor significances for the full data set (N=60), showing the reliability (expressed by the Wald *p*-value) of individual-predictor models (plus Constant) in logistic regression analysis with *Takeoff* as the dependent variable. Here each model included just one predictor, plus a constant. Subject ID is an identifier, not a predictor, and Latency is a descriptor, hence these lack *p*-values. These predictors generally show very low reliability, with the exception of those highlighted in gray. However, of those, we should exclude all but *incent* and *ventur* from further consideration, due to high numbers of missing values (MV) for the other three. Note that the reference category for *lic_type* was "Private" (N=39), so *p* expresses the analysis "Private versus All Other Categories." No individual category had a *p* of < .12 in any case. ### **APPENDIX I** | Description | Name | Sig. | g | MVs | Description | Name | Sig. | |------------------------------------|----------|-------|---|-----|---|----------|-------| | Order in w hich S. w as run | runorder | 0.675 | | | Aviation Safety Attitude scale | asa | 0.645 | | Subject ID# | idnum | | | | Anxiety Sensitivity Index, total score | asi | 0.127 | | Takeoff (Y/N) | takeoff | | | | Barratt Impulsiveness Scale (BIS-10)Impulsive Planning scale | imp_plan | 0.615 | | Latency (minutes) | latcy | | | | BISMotor Impulsivity scale | imp_moti | 0.957 | | Visibility | vis | 0.064 | | | BIS-Cognitive Impulsivity scale | imp_cog | 0.398 | | Ceiling | ceil | 0.691 | | | BIStotal score | bis | 0.562 | | Incentive | incent | | | | Eysenck Impulsivity Scale (EIS)Impulsiveness scale | impuls | 0.394 | | Experimenter | exptr | 0.261 | | | EISVenturesomeness scale | ventur | 0.713 | | Yr started flying | yr_flg | | | | EISEmpathy scale | empath | 0.881 | | Years flying, total | yrs_flg | 0.470 | 2 | | Hazardous Events Index | hei | 0.221 | | | age | 0.942 | 1 | | Multidimensional Personality Questionnaire, Brief Form (MPQ-BF) | | | | | gender | 0.815 | | | MPQWellbeing scale | w ellbe | 0.896 | | Type of License | type_lic | 0.999 | | | MPQSocial Potency scale | socpot | 0.269 | | Instrument Rating | inst_rtg | 0.873 | | | MPQAchievement scale | achieve | 0.574 | | Total flight hours | fh_tot | 0.591 | 1 | | MPQSocial Closeness scale | socclose | 0.590 | | Fithrs past year | fh_12m | 0.911 | 2 | | MPQStress Reaction scale | stress | 0.544 | | Flthrs past 90 days | fh_90d | 0.907 | | | MPQAlienation scale | alienate | 0.787 | | High-performance A/C, tot hrs | hp_tot | 0.347 | 2 | | MPQAggression scale | aggress | 0.673 | | HP last 12 mo | hp_12m | 0.713 | 2 | | MPQControl scale | control | 0.930 | | HP last
90 days | hp_90d | 0.328 | 2 | | MPQHarm Avoidance scale | harmav | 0.641 | | Simulated instrument hrs total | si_tot | 0.995 | | | MPQTraditionalism scale | tradit | 0.203 | | Sim hr last 12 mo | si_12m | 0.588 | 2 | | MPQAbsorption scale | absorpt | 0.961 | | Sim hr last 90 d | si_90d | 0.982 | 2 | | Rohrmann Risk Orientation QuestionnaireCautiousness scale | roq_c | 0.345 | | Actual instrument hrs, total | ai_tot | 0.482 | 2 | | Rohrmann Risk Orientation QuestionnaireRisk Propensity scale | roq_p | 0.637 | | Al last 12 mo | ai_12m | 0.753 | 1 | | Sensation-Seeking Scale | sss | 0.888 | | Al last 90 d | ai_90d | 0.512 | 1 | | State-Trait Anxiety InventoryState | anx_st | 0.484 | | Personal visibility minimum | vis_min | 0.523 | | | State-Trait Anxiety InventoryTrait | anx_tr | 0.393 | | Personal ceiling minimum | ceil_min | 0.487 | 1 | | Balloon Analogue Risk Task (BART)test duration | durn_se | 0.864 | | Do you adjust minima? | min_adj | 0.244 | | | BARTaverage pumps | pumpsav | 0.341 | | Flow n this route before? | fln_rt | 0.265 | | | BARTaverage pumps, low-payoff condition | pmpavgl | 0.552 | | Distance through wx imp? | dthruw x | 0.627 | | | BARTaverage pumps, medium-payoff condition | pmpavgr | 0.462 | | | | | | | BARTaverage pumps, high-payoff condition | pmpavgł | 0.234 | | Passengers change TO willingness | pass_mot | 0.175 | | 1 | BARTadjusted average | pmpadja | 0.460 | | More flt hrs change TO willingness | fhincmot | 0.204 | | | BARTadjusted average, low-pay condn | padjavlo | 0.975 | | Mission-critical chg. w-ness? | missnmot | 0.024 | П | 7 | BARTadjusted average, med-pay condn | padjavm | 0.768 | | Flow n Malibu chg w -ness? | mal_sub | 0.854 | П | 4 | BARTadjusted average, high-pay condn | padjavhi | 0.186 | | Being a simulator chg w-ness? | sim_mot | 0.910 | | 3 | BARTtotal payoff (cents) | pay_tot | 0.749 | | more specifically (re prev Q) | simmotsb | 0.408 | | | BARTtotal payoff, low-pay cond'n | pay_low | 0.836 | | | | | | | BARTtotal payoff, med-pay cond'n | pay_med | 0.990 | | Would crash embarrass you? | crashsig | 0.337 | П | 12 | BARTtotal payoff, high-pay cond'n | pay_hi | 0.365 | | How much did you consider traffic | tx_mot | 0.422 | | 26 | BARTtotal balloon explosions | bang_tot | 0.272 | | Ever had a bad w x experience? | badw x | 0.472 | | | BARTexplosions, low-pay cond'n | bang_lov | | | | | | | | BARTexplosions, med-pay cond'n | bang_me | 0.403 | | | | | П | | BARTexplosions, high-pay cond'n | bang_hi | 0.229 | Predictor significances for the Low-Incentive data set (N=30), showing the reliability (Wald *p*-value) of individual-predictor models (plus Constant) in logistic regression analysis with *Takeoff* as the dependent variable. The reference category on *type_lic* is "Private," on *simmotsb* it is "Didn't matter." Keep in mind that the SPSS reference category is the one being weighted "0" in the logistic regression prediction equation. ## APPENDIX J | Description | Name | Sig. | g | MVs | Description | Name | Sig. | |---------------------------------------|----------|-------|---|-----|---|----------|-------| | Order in which S. was run | runorder | 0.612 | | | Aviation Safety Attitude scale | asa | 0.700 | | Subject ID# | idnum | | | | Anxiety Sensitivity Index, total score | asi | 0.910 | | Takeoff (Y/N) | takeoff | | | | Barratt Impulsiveness Scale (BIS-10)Impulsive Planning scale | imp plan | 0.809 | | Latency (minutes) | latcy | | | | BISMotor Impulsivity scale | imp motr | 0.820 | | Visibility | vis | 0.655 | | | BIS-Cognitive Impulsivity scale | imp cog | 0.595 | | Ceiling | ceil | 0.466 | | | BIStotal score | bis | 0.829 | | Incentive | incent | N/A | | | Eysenck Impulsivity Scale (EIS)Impulsiveness scale | impuls | 0.668 | | Weather severity | wxsvrty | 0.364 | | | EISVenturesomeness scale | ventur | 0.085 | | Experimenter | exptr | 0.080 | | | EISEmpathy scale | empath | 0.296 | | Years flying, total | yrs_flg | 0.451 | | | Hazardous Events Index | hei | 0.976 | | | age | 0.420 | 1 | | Multidimensional Personality Questionnaire, Brief Form (MPQ-BF) | | | | | gender | 0.476 | | | MPQWellbeing scale | wellbe | 0.980 | | Type of License | type_lic | 0.933 | | | MPQSocial Potency scale | socpot | 0.947 | | Instrument Rating | inst_rtg | 0.069 | | | MPQAchievement scale | achieve | 0.735 | | Total flight hours | fh_tot | 0.420 | 2 | | MPQSocial Closeness scale | socclose | 0.117 | | Flthrs past year | fh_12m | 0.385 | 1 | | MPQStress Reaction scale | stress | 0.980 | | Fithrs past 90 days | fh_90d | 0.192 | | | MPQAlienation scale | alienate | 0.304 | | High-performance A/C, tot hrs | hp_tot | 0.333 | | | MPQAggression scale | aggress | 0.267 | | HP last 12 mo | hp_12m | 0.090 | 2 | | MPQControl scale | control | 0.622 | | HP last 90 days | hp_90d | 0.164 | 2 | | MPQHarm Avoidance scale | harmav | 0.337 | | Simulated instrument hrs total | si_tot | 0.105 | | | MPQTraditionalism scale | tradit | 0.079 | | Sim hr last 12 mo | si_12m | 0.036 | | | MPQAbsorption scale | absorpt | 0.823 | | Sim hr last 90 d | si_90d | 0.130 | 1 | | Rohrmann Risk Orientation QuestionnaireCautiousness scale | roq_c | 0.240 | | Actual instrument hrs, total | ai_tot | 0.625 | 1 | | Rohrmann Risk Orientation QuestionnaireRisk Propensity scale | roq_p | 0.325 | | Al last 12 mo | ai_12m | 0.481 | 1 | | Sensation-Seeking Scale | sss | 0.937 | | Al last 90 d | ai_90d | 0.201 | 2 | | State-Trait Anxiety InventoryState | anx_st | 0.161 | | Personal visibility minimum | vis_min | 0.519 | | 1 | State-Trait Anxiety InventoryTrait | anx_tr | 0.512 | | Personal ceiling minimum | ceil_min | 0.726 | 1 | 1 | Balloon Analogue Risk Task (BART)test duration | durn_sec | 0.437 | | Do you adjust minima? | min_adj | 0.999 | | 3 | BARTaverage pumps | pumpsavg | 0.703 | | Flown this route before? | fln_rt | 0.485 | | 3 | BARTaverage pumps, low-payoff condition | pmpavglo | 0.453 | | Distance through wx imp? | dthruwx | 0.638 | | 3 | BARTaverage pumps, medium-payoff condition | pmpavgme | 0.812 | | \$ bonus motivating? (Hi Incent only) | buck_mot | 0.071 | | 2 | BARTaverage pumps, high-payoff condition | pmpavghi | 0.688 | | Passengers change TO willingness? | pass_mot | 0.323 | | 3 | BARTadjusted average | pmpadjav | 0.682 | | More flt hrs change TO willingness? | fhincmot | 0.491 | | 5 | BARTadjusted average, low-pay condn | padjavlo | 0.563 | | Mission-critical chg. w-ness? | missnmot | 0.178 | | 6 | BARTadjusted average, med-pay condn | padjavme | 0.835 | | Flown Malibu chg w-ness? | mal_sub | 0.728 | | 6 | BARTadjusted average, high-pay condn | padjavhi | 0.874 | | Being a simulator chg w-ness? | sim_mot | 0.159 | | 6 | BARTtotal payoff (cents) | pay_tot | 0.679 | | more specifically (re prev Q) | simmotsb | 0.139 | | 7 | BARTtotal payoff, low-pay cond'n | pay_low | 0.868 | | How significant was the \$ to you? | buck_sig | 0.126 | | 6 | BARTtotal payoff, med-pay cond'n | pay_med | 0.999 | | Would crash embarrass you? | crashsig | 0.135 | | 8 | BARTtotal payoff, high-pay cond'n | pay_hi | 0.995 | | How much did you consider traffic? | tx_mot | 0.999 | | 23 | BARTtotal balloon explosions | bang_tot | 0.503 | | Ever had a bad wx experience? | badwx | 0.679 | | 5 | BARTexplosions, low-pay cond'n | bang_low | 0.482 | | | | | | | BARTexplosions, med-pay cond'n | bang_med | 0.533 | | | | | | | BARTexplosions, high-pay cond'n | bang_hi | 0.783 | High Incentive data, N=30, single variable (plus Constant) models. Reference category for $type_lic$ is "Private" (no individual p < .187). Reference category for simmotsb is "Positives and negatives cancel" (no individual p < .072). ### APPENDIX K | | Interacti | ons <i>vis</i> | Х | се | il x facto | r below | | |----------|-----------|----------------|---|-----|------------|----------|-------| | Name | MV | Sig. | R | ef | Sig. | Name | Sig. | | runorder | | 0.189 | | | | imp_motr | 0.381 | | | | | | | | imp_cog | 0.253 | | exptr | | 0.134 | В | Н | 0.042 | bis | 0.392 | | yrs_flg | | 0.604 | | | | impuls | 0.418 | | age | | 0.655 | | | | ventur | 0.252 | | gender | | 0.942 | М | F | 0.444 | empath | 0.579 | | type_lic | | 0.788 | | Pr | ivate | hei | 0.466 | | inst_rtg | | 0.375 | N | Υ | 0.131 | w ellbe | 0.482 | | fh_tot | | 0.282 | | | | socpot | 0.512 | | fh_12m | | 0.559 | | | | achieve | 0.606 | | fh_90d | | 0.473 | | | | socclose | 0.938 | | hp_tot | | 0.380 | | | | stress | 0.362 | | hp_12m | | 0.230 | | | | alienate | 0.123 | | hp_90d | | 0.717 | | | | aggress | 0.083 | | si_tot | | 0.244 | | | | control | 0.772 | | si_12m | | 0.379 | | | | harmav | 0.764 | | si_90d | | 0.802 | | | | tradit | 0.054 | | ai_tot | | 0.305 | | | | absorpt | 0.896 | | ai_12m | | 0.445 | | | | roq_c | 0.201 | | ai_90d | | 0.177 | | | | roq_p | 0.345 | | vis_min | 1 | 0.308 | | | | sss | 0.474 | | ceil_min | 1 | 0.398 | | | | anx_st | 0.179 | | min_adj | 3 | 0.101 | N | Υ | 0.997 | anx_tr | 0.235 | | fln_rt | 3 | 0.363 | N | Υ | 0.093 | durn_sec | 0.207 | | dthruwx | 3 | 0.859 | N | Υ | 0.961 | pumpsavg | 0.419 | | buck_mot | 2 | 0.052 | Ν | Υ | 0.137 | pmpavglo | 0.462 | | pass_mot | 3 | 0.388 | | | | pmpavgme | 0.568 | | fhincmot | 5 | 0.194 | | | | pmpavghi | 0.281 | | missnmot | 6 | 0.291 | | | | pmpadjav | 0.372 | | mal_sub | 6 | 0.754 | | | | padjavlo | 0.461 | | sim_mot | 6 | 0.211 | | | | padjavme | 0.519 | | simmotsb | 7 | 0.316 | " | +/- | - cancel" | padjavhi | 0.314 | | buck_sig | 6 | 0.523 | | | | pay_tot | 0.453 | | crashsig | 8 | 0.227 | | | | pay_low | 0.427 | | tx_mot | 23 | 0.653 | | | | pay_med | 0.568 | | badwx | 5 | 0.806 | N | Υ | 0.658 | pay_hi | 0.398 | | | | | | | | bang_tot | 0.438 | | asa | | 0.480 | | | | bang_low | 0.553 | | asi | | 0.288 | | | | bang_med | 0.571 | | imp_plan | | 0.643 | | | | bang_hi | 0.278 | High Incentive group only, N = 30. Reference category for $type_lic$ was "Private," and results reflect composite significance for all license types. In no case was p < .436 for license
type. Reference category for simmotsb was "Positives and negatives cancelled." We were unable to coerce SPSS into defining the reference category as "Didn't matter." SPSS apparently sorts categoricals into frequency counts and assigns its "First" and "Last" categories according to frequency, rather than to the order in which categories are coded. In other words, recoding makes no difference. And, since its only options for assigning reference are "First" or "Last," it was impossible to equilibrate the analysis of simmotsb with its Low Incentive counterpart. In any event, the composite significance of simmotsb and all its components were all > .165, so the matter is irrelevant ### APPENDIX L | | | | _ | | | not x factor be | | | | | | |----------|----|-------|----|----|-------|-----------------|---|----------|---|---|-------| | Name | MV | Sig. | | ef | Sig. | Name MV | | Sig. Ref | | | Sig. | | runorder | 2 | 0.078 | N | Υ | 0.144 | asa | 2 | 0.066 | N | Υ | 0.061 | | vis | 2 | 0.060 | N | Υ | 0.125 | asi | 2 | 0.083 | N | Υ | 0.187 | | ceil | 2 | 0.064 | N | Υ | 0.112 | imp_plan | 2 | 0.055 | N | Υ | 0.053 | | exptr | 2 | 0.064 | NH | ΥH | 0.916 | imp_motr | 2 | 0.049 | Ν | Υ | 0.051 | | | | 0.877 | NB | YΒ | 0.068 | imp_cog | 2 | 0.048 | Ν | Υ | 0.080 | | yrs_flg | 2 | 0.531 | N | Υ | 0.253 | bis | 2 | 0.041 | Ν | Υ | 0.050 | | age | 2 | 0.129 | N | Υ | 0.083 | impuls | 2 | 0.020 | Ν | Υ | 0.10 | | gender | 2 | 0.469 | NM | ΥM | 0.706 | ventur | 2 | 0.021 | N | Υ | 0.139 | | | | 0.030 | NF | YF | 0.071 | empath | 2 | 0.200 | N | Υ | 0.120 | | type_lic | 2 | 0.974 | NP | ΥP | 0.999 | hei | 2 | 0.301 | Ν | Υ | 0.194 | | inst_rtg | 2 | 0.811 | NN | ΥN | 0.066 | w ellbe | 2 | 0.104 | Ν | Υ | 0.135 | | | | 0.047 | NY | ΥY | 0.877 | socpot | 2 | 0.116 | Ν | Υ | 0.167 | | fh_tot | 2 | 0.231 | N | Υ | 0.134 | achieve | 2 | 0.045 | Ν | Υ | 0.069 | | fh_12m | 2 | 0.670 | N | Υ | 0.225 | socclose | 2 | 0.321 | N | Υ | 0.061 | | fh_90d | 2 | 0.904 | N | Υ | 0.253 | stress | 2 | 0.181 | N | Υ | 0.227 | | hp_tot | 2 | 0.897 | N | Υ | 0.152 | alienate | 2 | 0.156 | N | Υ | 0.527 | | hp_12m | 2 | 0.860 | N | Υ | 0.103 | aggress | 2 | 0.127 | N | Υ | 0.568 | | hp_90d | 2 | 0.649 | N | Υ | 0.070 | control | 2 | 0.363 | N | Υ | 0.248 | | si_tot | 2 | 0.917 | N | Υ | 0.113 | harmav | 2 | 0.801 | N | Υ | 0.088 | | si_12m | 2 | 0.200 | N | Υ | 0.244 | tradit | 2 | 0.053 | N | Υ | 0.411 | | si_90d | 2 | 0.230 | N | Υ | 0.728 | absorpt | 2 | 0.027 | Ν | Υ | 0.067 | | ai_tot | 2 | 0.315 | N | Υ | 0.190 | roq_c | 2 | 0.084 | N | Υ | 0.166 | | ai_12m | 2 | 0.107 | N | Υ | 0.246 | roq_p | 2 | 0.032 | Ν | Υ | 0.058 | | ai_90d | 2 | 0.156 | N | Υ | 0.700 | sss | 2 | 0.064 | N | Υ | 0.080 | | vis_min | 2 | 0.084 | N | Υ | 0.052 | anx_st | 2 | 0.022 | Ν | Υ | 0.138 | | ceil_min | 2 | 0.387 | N | Υ | 0.137 | anx_tr | 2 | 0.050 | Ν | Υ | 0.062 | | min_adj | 3 | 0.007 | NN | ΥN | 0.228 | durn_sec | 2 | 0.122 | N | Υ | 0.336 | | | | 0.999 | NY | ΥY | 0.999 | pumpsavg | 2 | 0.063 | N | Υ | 0.044 | | fln_rt | 3 | 0.030 | NN | ΥN | 0.999 | pmpavglo | 2 | 0.032 | Ν | Υ | 0.039 | | | | 0.707 | NY | ΥY | 0.999 | pmpavgme | 2 | 0.095 | N | Υ | 0.038 | | dthruwx | 3 | 0.092 | NN | ΥN | 0.999 | pmpavghi | 2 | 0.095 | N | Υ | 0.075 | | | | 0.684 | NY | ΥY | 0.825 | pmpadjav | 2 | 0.070 | N | Υ | 0.044 | | pass_mot | 4 | 0.169 | N | Υ | 0.499 | padjavlo | 2 | 0.039 | Ν | Υ | 0.029 | | fhincmot | 5 | 0.256 | N | Υ | 1.000 | padjavme | 2 | 0.132 | N | Υ | 0.039 | | missnmot | 6 | 0.477 | N | Υ | 0.999 | padjavhi | 2 | 0.122 | N | Υ | 0.083 | | mal_sub | 6 | 0.945 | N | Υ | 0.503 | pay_tot | 2 | 0.059 | N | Υ | 0.043 | | sim_mot | 6 | 0.251 | N | Υ | 1.000 | pay_low | 2 | 0.042 | Ν | Υ | 0.029 | | simmotsb | 7 | 0.442 | N | Υ | 0.168 | pay_med | 2 | 0.107 | N | Υ | 0.042 | | buck_sig | 6 | 0.031 | N | Υ | 0.120 | pay_hi | 2 | 0.083 | N | Υ | 0.071 | | crashsig | 8 | 0.124 | N | Υ | 0.387 | bang_tot | 2 | 0.080 | N | Υ | 0.054 | | tx_mot | 23 | 0.999 | N | Υ | 0.999 | bang_low | 2 | 0.047 | Ν | Υ | 0.052 | | badwx | 5 | 0.840 | NN | ΥN | 0.414 | bang_med | 2 | 0.120 | N | Υ | 0.082 | | | | 0.143 | NY | ΥY | 0.212 | bang_hi | 2 | 0.153 | N | Υ | 0.077 | High Incentive, N = 30. Reference category for $type_lic$ is "Private." Reference category for simmotsb is "Positives and negatives cancel." The reason for most of the missing values here is that $buck_mot$ had two itself, so each analysis therefore automatically had to reflect at least these two.